

Book: Optimizing Oracle Performance
Section: Part I: Method

Chapter 1. A Better Way to Optimize

For many people, Oracle performance is a very difficult problem. Since 1990, I've worked with thousands of
professionals engaged in performance improvement projects for their Oracle systems. Oracle performance
improvement projects appear to progress through standard stages over time. I think the names of those stages are
stored in a vault somewhere beneath Geneva. If I remember correctly, the stages are:

Unrestrained optimism
Informed pessimism
Panic
Denial
Despair
Utter despair
Misery and famine

For some reason, my colleagues and I are rarely invited to participate in a project until the "misery and famine" stage.
Here is what performance improvement projects often look like by the time we arrive. Do they sound like situations
you've seen before?

Technical experts disagree over root causes

The severity of a performance problem is proportional to the number of people who show up at meetings to
talk about it. It's a particularly bad sign when several different companies' "best experts" show up in the same
meeting. In dozens of meetings throughout my career, I've seen the "best experts" from various consulting
companies, computer and storage subsystem manufacturers, software vendors, and network providers convene
to dismantle a performance problem. In exactly 100% of these meetings I've attended, these groups have
argued incessantly over the identity of a performance problem's root cause. For weeks. How can dedicated,
smart, well-trained, and well-intentioned professionals all look at the same system and render different
opinions—often even contradictory opinions—on what's causing a performance problem? Apparently, Oracle
system performance is a very difficult problem.

Experts claim excellent progress, while users see no improvement

Many of my students grin with memories when I tell stories of consultants who announce proudly that they
have increased some statistic markedly—maybe they increased some hit ratio or reduced some extent count or
some such—only to be confronted with the indignity that the users can't tell that anything is any better at all.
The usual result of such an experience is a long report from the consultant explaining as politely as possible
that, although the users aren't clever enough to tell, the system is eminently better off as a result of the attached
invoice.

The story is funny unless, of course, you're either the owner of a company who's paying for all this wasted
time, or the consultant who won't get paid because he didn't actually accomplish anything meaningful. Maybe
this story seems funny because most of us at some time or another have been that consultant. How is it
possible to so obviously improve such important system metrics as hit ratios, average latencies, and wait
times, yet have users who can't even perceive the beneficial results of our effort? Apparently, Oracle system
performance is a very difficult problem.

Hardware upgrades either don't help, or they slow the system further

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-1

Since first picking up Neil Gunther's The Practical Performance Analyst in 1998 [Gunther (1998)], I have
presented to various audiences the possibility of one particularly counterintuitive phenomenon. "Do you
realize that a hardware upgrade can actually degrade the performance of an important application?" Every
audience to which I've ever presented this question and the facts pertaining to it have had virtually identical
reactions. Most of the audience smiles in disbelief while I describe how this can happen, and one or two
audience members come to the podium afterward to rejoice in finally figuring out what had happened several
months after their horrible "upgrade gone wrong."

Hardware upgrades may not often cause noticeable new performance problems, but they can. Very often,
hardware upgrades result in no noticeable difference, except of course for the quite noticeable amount of cash
that flows out the door in return for no perceptible benefit. That a hardware upgrade can result in no
improvement is somewhat disturbing. The idea that a hardware upgrade can actually result in a performance
degradation, on its face, is utterly incomprehensible. How is it possible that a hardware upgrade might not
only not improve performance, but that it might actually harm it? Apparently, Oracle system performance is a
very difficult problem.

The number one system resource consumer is waste

Almost without exception, my colleagues and I find that 50% or more of every system's workload is waste.
We define "waste" very carefully as any system workload that could have been avoided with no loss of
function to the business. How can completely unnecessary workload be the number one resource consumer on
so many professionally managed systems? Apparently, Oracle system performance is a very difficult problem.

These are smart people. How could their projects be so messed up? Apparently, Oracle system optimization is very
difficult. How else can you explain why so many projects at so many companies that don't talk to each other end up in
horrible predicaments that are so similar?

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

Book: Optimizing Oracle Performance
Section: Chapter 1. A Better Way to Optimize

1.1 "You're Doing It Wrong"

One of my hobbies involves building rather largish things out of wood. This hobby involves the use of heavy
machines that, given the choice, would prefer to eat my fingers instead of a piece of five-quarters American Black
Walnut. One of the most fun things about the hobby for me is to read about a new technique that improves accuracy
and saves time, while dramatically reducing my personal risk of accidental death and dismemberment. For me, getting
the "D'oh, I'm doing it wrong!" sensation is a pleasurable thing, because it means that I'm on the brink of learning
something that will make my life noticeably better. The net effect of such events on my emotional well-being is
overwhelmingly positive. Although I'm of course a little disappointed every time I acquire more proof that I'm not
omniscient, I'm overjoyed at the notion that soon I'll be better.

It is in the spirit of this story that I submit for your consideration the following hypothesis:

If you find that Oracle performance tuning is really difficult, then chances are excellent that you're
doing it wrong.

Now, here's the scary part:

You're doing it wrong because you've been taught to do it that way.

This is my gauntlet. I believe that most of the Oracle tuning methods either implied or taught since the 1980s are
fundamentally flawed. My motivation for writing this book is to share with you the research that has convinced me
that there's a vastly better way.

Let's begin with a synopsis of the "method" that you're probably using today. A method is supposed to be a
deterministic sequence of steps. One of the first things you might notice in the literature available today is the striking
absence of actual method. Most authors focus far more attention on tips and techniques than on methods. The result is
a massive battery of "things you might want to do" with virtually no structure present to tell you whether or when it's
appropriate to do each. If you browse google.com hits on the string "Oracle performance method," you'll see what I
mean.

Most of the Oracle performance improvement methods prescribed today can be summarized as the sequence of steps
described in Method C (the conventional trial-and-error approach). If you have a difficult time with Oracle
performance optimization, the reason may dawn on you as you review Method C. One of the few things that this
method actually optimizes is the flow of revenue to performance specialists who take a long time to solve
performance problems.

Method C: The Trial-and-Error Method That Dominates the Oracle
Performance Tuning Culture Today

1. Hypothesize that some performance metric x has an unacceptable value.

2. Try things with the intent of improving x. Undo any attempt that makes performance noticeably
worse.

3. If users do not perceive a satisfactory response time improvement, then go to step 1.

4. If the performance improvement is satisfactory, then go to step 1 anyway, because it may be
possible to produce other performance improvements if you just keep searching.

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-1-SECT-1

This trial-and-error approach is, of course, not the only performance improvement method in town. The YAPP Method
first described by Anjo Kolk and Shari Yamaguchi in the 1990s [Kolk et al. (1999)] was probably the first to rise
above the inauspicious domain of tips and techniques to result in a truly usable deterministic sequence of steps. YAPP
truly revolutionized the process of performance problem diagnosis, and it serves as one of the principal inspirations
for this text.

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

Book: Optimizing Oracle Performance
Section: Chapter 1. A Better Way to Optimize

1.2 Requirements of a Good Method

What distinguishes a good method from a bad one? When we started hotsos.com in 1999, I began spending a lot of
time identifying the inefficiencies of existing Oracle performance improvement methods. It was a fun exercise. After
much study, my colleagues and I were able to construct a list of objectively measurable criteria that would assist in
distinguishing good from bad in a method. We hoped that such a list would serve as a yardstick that would allow us to
measure the effectiveness of any method refinements we would create. Here is the list of attributes that I believe
distinguish good methods from bad ones:

Impact

If it is possible to improve performance, a method must deliver that improvement. It is unacceptable for a
performance remedy to require significant investment input but produce imperceptible or negative end-user
impact.

Efficiency

A method must always deliver performance improvement results with the least possible economic sacrifice. A
performance improvement method is not optimal if another method could have achieved a suitable result less
expensively in equal or less time.

Measurability

A method must produce performance improvement results that can be measured in units that make sense to the
business. Performance improvement measurements are inadequate if they can be expressed only in technical
units that do not correspond directly to improvement in cash flow, net profit, and return on investment.

Predictive capacity

A method must enable the analyst to predict the impact of a proposed remedy action. The unit of measure for
the prediction must be the same as that which the business will use to measure performance improvement.

Reliability

A method must identify the correct root cause of the problem, no matter what that root cause may be.

Determinism

A method must guide the analyst through an unambiguous sequence of steps that always rely upon
documented axioms, not experience or intuition. It is unacceptable for two analysts using the same method to
draw different conclusions about the root cause of a performance problem.

Finiteness

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-1-SECT-2

A method must have a well-defined terminating condition, such as a proof of optimality.

Practicality

A method must be usable in any reasonable operating condition. For example, it is unacceptable for a
performance improvement method to rely upon tools that exist in some operating environments but not others.

Method C suffers brutally on every single dimension of this eight-point definition of "goodness." I won't belabor the
point here, but I do encourage you to consider, right now, how your existing performance improvement methods score
on each of the attributes listed here. You might find the analysis quite motivating. When you've finished reading Part I
of this book, I hope you will revisit this list and see whether you think your scores have improved as a result of what
you have read.

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

Book: Optimizing Oracle Performance
Section: Chapter 1. A Better Way to Optimize

1.3 Three Important Advances

In the Preface, I began with the statement:

Optimizing Oracle response time is, for the most part, a solved problem.

This statement stands in stark contrast to the gloomy picture I painted at the beginning of this chapter—that, "For
many people, Oracle system performance is a very difficult problem." The contrast, of course, has a logical
explanation. It is this:

Several technological advances have added impact, efficiency, measurability, predictive capacity,
reliability, determinism, finiteness, and practicality to the science of Oracle performance optimization.

In particular, I believe that three important advances are primarily responsible for the improvements we have today.
Curiously, while these advances are new to most professionals who work with Oracle products, none of these
advances is really "new." Each is used extensively by optimization analysts in non-Oracle fields; some have been in
use for over a century.

1.3.1 User Action Focus

The first important advance in Oracle optimization technology follows from a simple mathematical observation:

You can't extrapolate detail from an aggregate.

Here's a puzzle to demonstrate my point. Imagine that I told you that a collection of 1,000 rocks contains 999 grey
rocks and one special rock that's been painted bright red. The collection weighs 1,000 pounds. Now, answer the
following question: "How much does the red rock weigh?" If your answer is, "I know that the red rock weighs one
pound," then, whether you realize it or not, you've told a lie. You don't know that the red rock weighs one pound.
With the information you've been given, you can't know. If your answer is, "I assume that the red rock weighs one
pound," then you're too generous in what you're willing to assume. Such an assumption puts you at risk of forming
conclusions that are incorrect—perhaps even stunningly incorrect.

The correct answer is that the red rock can weigh virtually any amount between zero and 1,000 pounds. The only
thing limiting the low end of the weight is the definition of how many atoms must be present in order for a thing to be
called a rock. Once we define how small a rock can be, then we've defined the high end of our answer. It is 1,000
pounds minus the weight of 999 of the smallest possible rocks. The red rock can weigh virtually anything between
zero and a thousand pounds. Answering with any more precision is wrong unless you happen to be very lucky. But
being very lucky at games like this is a skill that can be neither learned nor taught, nor repeated with acceptable
reliability.

This is one reason why Oracle analysts find it so frustrating to diagnose performance problems armed only with
system-wide statistics such as those produced by Statspack (or any of its cousins derived from the old SQL scripts
called bstat and estat). Two analysts looking at exactly the same Statspack output can "see" two completely different
things, neither of which is completely provable or completely disprovable by the Statspack output. It's not Statspack's
fault. It's a problem that is inherent in any performance analysis that uses system-wide data as its starting point
(V$SYSSTAT, V$SYSTEM_EVENT, and so on). You can in fact instruct Statspack to collect sufficiently granular data for
you, but no Statspack documentation of which I'm aware makes any effort to tell you why you might ever want to.

A fine illustration is the case of an Oracle system whose red rock was a payroll processing problem. The officers of
the company described a performance problem with Oracle Payroll that was hurting their business. The database
administrators of the company described a performance problem with latches: cache buffers chains latches, to be

Page 1 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

specific. Both arguments were compelling. The business truly was suffering from a problem with payroll being too
slow. You could see it, because checks weren't coming out of the system fast enough. The "system" truly was
suffering from latch contention problems. You could see it, because queries of V$SYSTEM_EVENT clearly showed that
the system was spending a lot of time waiting for the event called latch free.

The company's database and system administration staff had invested three frustrating months trying to fix the "latch
free problem," but the company had found no relief for the payroll performance problem. The reason was simple:
payroll wasn't spending time waiting for latches. How did we find out? We acquired operational timing data for one
execution of the slow payroll program. What we found was amazing. Yes, lots of other application programs in fact
spent time waiting to acquire cache buffers chains latches. But of the slow payroll program's total 1,985.40-second
execution time, only 23.69 seconds were consumed waiting on latches. That's 1.2% of the program's total response
time. Had the company completely eradicated waits for latch free from the face of their system, they would have made
only a 1.2% performance improvement in the response time of their payroll program.

How could system-wide statistics have been so misleading? Yes, lots of non-payroll workload was prominently
afflicted by latch free problems. But it was a grave error to assume that the payroll program's problem was the same as
the system-wide average problem. The error in assuming a cause-effect relationship between latch free waiting and
payroll performance cost the company three months of wasted time and frustration and thousands of dollars in labor
and equipment upgrade costs. By contrast, diagnosing the real payroll performance problem consumed only about ten
minutes of diagnosis time once the company saw the correct diagnostic data.

My colleagues and I encounter this type of problem repeatedly. The solution is for you (the performance analyst) to
focus entirely upon the user actions that need optimizing. The business can tell you what the most important user
actions are. The system cannot. Once you have identified a user action that requires optimization, then your first job is
to collect operational data exactly for that user action—no more, and no less.

1.3.2 Response Time Focus

For a couple of decades now, Oracle performance analysts have labored under the assumption that there's really no
objective way to measure Oracle response time [Ault and Brinson (2000), 27]. In the perceived absence of objective
ways to measure response time, analysts have settled for the next-best thing: event counts. And of course from event
counts come ratios. And from ratios come all sorts of arguments about which "tuning" actions are important, and
which ones are not.

However, users don't care about event counts and ratios and arguments; they care about response time: the duration
that begins when they request something and ends when they get their answer. No matter how much complexity you
build atop any timing-free event-count data, you are fundamentally doomed by the following inescapable truth, the
subject of the second important advance:

You can't tell how long something took by counting how many times it happened.

Users care only about response times. If you're measuring only event counts, then you're not measuring what the users
care about. If you liked the red rock quiz, here's another one for you: What's causing the performance problem in the
program that produced the data in Example 1-1?

Example 1-1. Components of response time listed in descending order of call volume

Response Time Component # Calls
------------------------------ ---------
CPU service 18,750
SQL*Net message to client 6,094
SQL*Net message from client 6,094
db file sequential read 1,740
log file sync 681
SQL*Net more data to client 108
SQL*Net more data from client 71
db file scattered read 34
direct path read 5
free buffer waits 4
log buffer space 2

Page 2 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

direct path write 2
log file switch completion 1
latch free 1

Example 1-2 shows the same data from the same program execution, this time augmented with timing data (reported
in seconds) and sorted by descending response time impact. Does it change your answer?

Example 1-2. Components of response time listed in descending order of contribution to response time

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
SQL*Net message from client 166.6s 91.7% 6,094 0.027338s

CPU service 9.7s 5.3% 18,750 0.000515s
unaccounted-for 2.2s 1.2%
db file sequential read 1.6s 0.9% 1,740 0.000914s
log file sync 1.1s 0.6% 681 0.001645s
SQL*Net more data from client 0.3s 0.1% 71 0.003521s
SQL*Net more data to client 0.1s 0.1% 108 0.001019s
free buffer waits 0.1s 0.0% 4 0.022500s
SQL*Net message to client 0.0s 0.0% 6,094 0.000007s
db file scattered read 0.0s 0.0% 34 0.001176s
log file switch completion 0.0s 0.0% 1 0.030000s
log buffer space 0.0s 0.0% 2 0.005000s
latch free 0.0s 0.0% 1 0.010000s
direct path read 0.0s 0.0% 5 0.000000s
direct path write 0.0s 0.0% 2 0.000000s
----------------------------- ----------------- -------------- ------------
Total 181.8s 100.0%

Of course it changes your answer, because response time is dominatingly important, and event counts are
inconsequential by comparison. The problem with the program that generated this data is what's going on with
SQL*Net message from client, not what's going on with CPU service.

If the year were 1991, we'd be in big trouble right now, because in 1991 the data that I've shown in this second table
wasn't available from the Oracle kernel. But if you've upgraded by now to at least Oracle7, then you don't need to
settle for event counts as the "next-best thing" to response time data. The basic assumption that you can't tell how long
the Oracle kernel takes to do things is simply incorrect, and it has been since Oracle release 7.0.12.

1.3.3 Amdahl's Law

The final "great advance" in Oracle performance optimization that I'll mention is an observation published in 1967 by
Gene Amdahl, which has become known as Amdahl's Law [Amdahl (1967)]:

The performance enhancement possible with a given improvement is limited by the fraction of the
execution time that the improved feature is used.

In other words, performance improvement is proportional to how much a program uses the thing you improved.
Amdahl's Law is why you should view response time components in descending response time order. In Example 1-2,
it's why you don't work on the CPU service "problem" before figuring out the SQL*Net message from client problem. If
you were to reduce total CPU consumption by 50%, you'd improve response time by only about 2%. But if you could
reduce the response time attributable to SQL*Net message from client by the same 50%, you'll reduce total response time
by 46%. In Example 1-2, each percentage point of reduction in SQL*Net message from client duration produces nearly
twenty times the impact of a percentage point of CPU service reduction.

If you are an experienced Oracle performance analyst, you may have heard that SQL*Net
message from client is an idle event that can be ignored. You must not ignore the so-called
idle events if you collect your diagnostic data in the manner I describe in Chapter 3.

Page 3 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-1-SECT-3

Amdahl's Law is a formalization of optimization common sense. It tells you how to get the biggest "bang for the
buck" from your performance improvement efforts.

1.3.4 All Together Now

Combining the three advances in Oracle optimization technology into one statement results in the following simple
performance method:

Work first to reduce the biggest response time component of a business' most important user action.

It sounds easy, right? Yet I can be almost certain that this is not how you optimize your Oracle system back home. It's
not what your consultants do or what your tools do. This way of "tuning" is nothing like what your books or virtually
any of the other papers presented at Oracle seminars and conferences since 1980 tell you to do. So what is the missing
link?

The missing link is that unless you know how to extract and interpret response time measurements from your Oracle
system, you can't implement this simple optimization method. Explaining how to extract and interpret response time
measurements from your Oracle system is a main point of this book.

I hope that by the time you read this book, my claims that "this is not how you do it
today" don't make sense anymore. As I write this chapter, many factors are converging to
make the type of optimization I'm describing in this book much more common among
Oracle practitioners. If the book you're holding has played an influencing role in that
evolution, then so much the better.

Page 4 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

Book: Optimizing Oracle Performance
Section: Chapter 1. A Better Way to Optimize

1.4 Tools for Analyzing Response Time

The definition of response time set forth by the International Organization for Standardization is plain but useful:

Response time is the elapsed time between the end of an inquiry or demand on a computer system and
the beginning of a response; for example, the length of the time between an indication of the end of an
inquiry and the display of the first character of the response at a user terminal (source:
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212896,00.html).

Response time is an objective measure of the interaction between a consumer and a provider. Consumers of computer
service want the right answer with the best response time for the lowest cost. Your goal as an Oracle performance
analyst is to minimize response time within the confines of the system owner's economic constraints. The ways to do
that become more evident when you consider the components of response time.

1.4.1 Sequence Diagram

A sequence diagram is a convenient way to depict the response time components of a user action. A sequence
diagram shows the flow of control as a user action consumes time in different layers of a technology stack. The
technology stack is a model that considers system components such as the business users, the network, the application
software, the database kernel, and the hardware in a stratified architecture. The component at each layer in the stack
demands service from the layer beneath it and supplies service to the layer above it. Figure 1-1 shows a sequence
diagram for a multi-tier Oracle system.

Figure 1-1. A sequence diagram for a multi-tier Oracle system

Figure 1-1 denotes the following sequence of actions, allowing us to literally see how each layer in the technology
stack contributes to the consumption of response time:

1. After considering what she wants from the system, a user initiates a request for data from a browser by
pressing the OK button. Almost instantaneously, the request arrives at the browser. The user's perception of
response time begins with the click of the OK button.

Page 1 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

2. After devoting a short bit of time to rendering the pixels on the screen to make the OK button look like it has
been depressed, the browser sends an HTTP packet to the wide-area network (WAN). The request spends
some time on the WAN before arriving at the application server.

3. After executing some application code on the middle tier, the application server issues a database call via
SQL*Net across the local-area network (LAN). The request spends some time on the LAN (less than a request
across a WAN) before arriving at the database server.

4. After consuming some CPU time on the database server, the Oracle kernel process issues an operating system
function call to perform a read from disk.

5. After consuming some time in the disk subsystem, the read call returns control of the request back to the
database CPU.

6. After consuming more CPU time on the database server, the Oracle kernel process issues another read request.

7. After consuming some more time in the disk subsystem, the read call returns control of the request again to the
database CPU.

8. After a final bit of CPU consumption on the database server, the Oracle kernel process passes the results of the
application server's database call. The return is issued via SQL*Net across the LAN.

9. After the application server process converts the results of the database call into the appropriate HTML, it
passes the results to the browser across the WAN via HTTP.

10. After rendering the result on the user's display device, the browser returns control of the request back to the
user. The user's perception of response time ends when she sees the information she requested.

In my opinion, the ideal Oracle performance optimization tool does not exist yet. The graphical user interface of the
ideal performance optimization tool would be a sequence diagram that could show how every microsecond of
response time had been consumed for any specified user action. Such an application would have so much information
to manage that it would have to make clever use of summary and drill-down features to show you exactly what you
wanted when you wanted it.

Such an application will probably be built soon. As you shall see throughout this book, much of the information that
is needed to build such an application is already available from the Oracle kernel. The biggest problems today are:

� Most of the non-database tiers in a multi-tier system aren't instrumented to provide the type of response time
data that the Oracle kernel provides. Chapter 7 details the response time data that I'm talking about.

� Depending upon your application architecture, it can be very difficult to collect properly scoped performance
diagnostic data for a specific user action. Chapter 3 explains what constitutes proper scoping for diagnostic
data, and Chapter 6 explains how to work around the data collection difficulties presented by various
application architectures.

However, much of what we need already exists. Beginning with Oracle release 7.0.12, and improving ever since, the
Oracle kernel is well instrumented for response time measurement. This book will help you understand exactly how to

A good sequence diagram reveals only the amount of detail that is appropriate for the
analysis at hand. For example, to simplify the content of Figure 1-1, I have made no effort
to show the tiny latencies that occur within the Browser, Apps Server, and DB CPU tiers
as their operating systems' schedulers transition processes among running and ready to
run states. In some performance improvement projects, understanding this level of detail
will be vital. I describe the performance impact of such state transitions in Chapter 7.

Page 2 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

take advantage of those measurements to optimize your approach to the performance improvement of Oracle systems.

1.4.2 Resource Profile

A complete sequence diagram for anything but a very simple user action would show so much data that it would be
difficult to use all of it. Therefore, you need a way to summarize the details of response time in a useful way. In
Example 1-2, I showed a sample of such a summary, called a resource profile. A resource profile is simply a table
that reveals a useful decomposition of response time. Typically, a resource profile reveals at least the following
attributes:

� Response time category

� Total duration consumed by actions in that category

� Number of calls to actions in that category

A resource profile is most useful when it lists its categories in descending order of elapsed time consumption per
category. The resource profile is an especially handy format for performance analysts because it focuses your
attention on exactly the problem you should solve first. The resource profile is the most important tool in my
performance diagnostic repertory.

The idea of the resource profile is nothing new, actually. The idea for using the resource profile as our company's
focus was inspired by an article on profilers published in the 1980s [Bentley (1988) 3-13], which itself was based on
work that Donald Knuth published in the early 1970s [Knuth (1971)]. The idea of decomposing response time into
components is so sensible that you probably do it often without realizing it. Consider how you optimize your driving
route to your favorite destination. Think of a "happy place" where you go when you want to feel better. For me it's my
local Woodcraft Supply store (http://www.woodcraft.com), which sells all sorts of tools that can cut fingers or crush
rib cages, and all sorts of books and magazines that explain how not to.

If you live in a busy city and schedule the activity during rush-hour traffic, the resource profile for such a trip might
resemble the following (expressed in minutes):

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
rush-hour expressway driving 90m 90% 2 45m
neighborhood driving 10m 10% 2 5m
----------------------------- ----------------- -------------- ------------
Total 100m 100%

If the store were, say, only fifteen miles away, you might find the prospect of sitting for an hour and a half in rush-
hour traffic to be disappointing. Whether or not you believe that your brain works in the format of a resource profile,
you probably would consider the same optimization that I'm thinking of right now: perhaps you could go to the store
during an off-peak driving period.

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
off-peak expressway driving 30m 75% 2 15m
neighborhood driving 10m 25% 2 5m
----------------------------- ----------------- -------------- ------------
Total 40m 100%

The driving example is simple enough, and the stakes are low enough, that a formal analysis is almost definitely
unnecessary. However, for more complex performance problems, the resource profile provides a convenient format
for proving a point, especially when decisions about whether or not to invest lots of time and money are involved.

Resource profiles add unequivocal relevance to Oracle performance improvement projects. Example 1-3 shows a
resource profile for the Oracle Payroll program described earlier in Section 1.3.1. Before the database administrators
saw this resource profile, they had worked for three months fighting a perceived problem with latch contention. In
desperation, they had spent several thousand dollars on a CPU upgrade, which had actually degraded the response

Page 3 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

time of the payroll action whose performance they were trying to improve. Within ten minutes of creating this
resource profile, the database administrator knew exactly how to cut this program's response time by roughly 50%.
The problem and its solution are detailed in Part II of this book.

Example 1-3. The resource profile for a network configuration problem that had previously been misdiagnosed
as both a latch contention problem and a CPU capacity problem

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
SQL*Net message from client 984.0s 49.6% 95,161 0.010340s
SQL*Net more data from client 418.8s 21.1% 3,345 0.125208s
db file sequential read 279.3s 14.1% 45,084 0.006196s
CPU service 248.7s 12.5% 222,760 0.001116s
unaccounted-for 27.9s 1.4%
latch free 23.7s 1.2% 34,695 0.000683s
log file sync 1.1s 0.1% 506 0.002154s
SQL*Net more data to client 0.8s 0.0% 15,982 0.000052s
log file switch completion 0.3s 0.0% 3 0.093333s
enqueue 0.3s 0.0% 106 0.002358s
SQL*Net message to client 0.2s 0.0% 95,161 0.000003s
buffer busy waits 0.2s 0.0% 67 0.003284s
db file scattered read 0.0s 0.0% 2 0.005000s
SQL*Net break/reset to client 0.0s 0.0% 2 0.000000s
----------------------------- ----------------- -------------- ------------
Total 1,985.4s 100.0%

Example 1-4 shows another resource profile that saved a project from a frustrating and expensive ride down a rat hole.
Before seeing the resource profile shown here, the proposed solution to this report's performance problem was to
upgrade either memory or the I/O subsystem. The resource profile proved unequivocally that upgrading either could
result in no more than a 2% response time improvement. Almost all of this program's response time was attributable
to a single SQL statement that motivated nearly a billion visits to blocks stored in the database buffer cache.

Problems like this are commonly caused by operational errors like the accidental deletion of schema statistics used by
the Oracle cost-based query optimizer (CBO).

Example 1-4. The resource profile for an inefficient SQL problem that had previously been diagnosed as an
I/O subsystem problem

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
CPU service 48,946.7s 98.0% 192,072 0.254835s
db file sequential read 940.1s 2.0% 507,385 0.001853s
SQL*Net message from client 60.9s 0.0% 191,609 0.000318s
latch free 2.2s 0.0% 171 0.012690s
other 1.4s 0.0%
----------------------------- ----------------- -------------- ------------
Total 49,951.3s 100.0%

Example 1-4 is a beautiful example of how a resource profile can free you from victimization to myth. In this case,
the myth that had confused the analyst about this slow session was the proposition that a high database buffer cache
hit ratio is an indication of SQL statement efficiency. The statement causing this slow session had an exceptionally
high buffer cache hit ratio. It is easy to understand why, by looking at the computation of the cache hit ratio (CHR)
metric for this case:

You can't tell by looking at the resource profile in Example 1-4 that the CPU capacity was
consumed by nearly a billion memory reads. Each of the 192,072 "calls" to the CPU service
resource represents one Oracle database call (for example, a parse, an execute, or a fetch).
From the detailed SQL trace information collected for each of these calls, I could
determine that the 192,072 database calls had issued nearly a billion memory reads. How
you can do this is detailed in Chapter 5.

Page 4 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

In this formula, LIO (logical I/O) represents the number of Oracle blocks obtained from Oracle memory (the database
buffer cache), and PIO (physical I/O) represents the number of Oracle blocks obtained from operating system read
calls.[1] The expression LIO - PIO thus represents the number of blocks obtained from Oracle memory that did not
motivate an operating system read call.

[1] This formula has many problems other than the one illustrated in this example. Many authors—including Adams, Lewis, Kyte, and
myself—have identified dozens of critical flaws in the definition of the database buffer cache hit ratio statistic. See especially [Lewis
(2003)] for more information.

Although most analysts would probably consider a ratio value of 0.9995 to be "good," it is of course not "perfect." In
the absence of the data shown in Example 1-4, many analysts I've met would have assumed that it was the
imperfection in the cache hit ratio that was causing the performance problem. But the resource profile shows clearly
that even if the 507,385 physical read operations could have been serviced from the database buffer cache, the best
possible total time savings would have been only 940.1 seconds. The maximum possible impact of fixing this
"problem" would have been to shave a 14-hour execution by a mere 16 minutes.

Considering the performance of user actions using the resource profile format has revolutionized the effectiveness of
many performance analysts. For starters, it is the perfect tool for determining what to work on first, in accordance
with our stated objective:

Work first to reduce the biggest response time component of a business' most important user action.

Another huge payoff of using the resource profile format is that it is virtually impossible for a performance problem to
hide from it. The informal proof of this conjecture requires only two steps:

Proof: If something is a response time problem, then it shows up in the resource profile. If it's not a
response time problem, then it's not a performance problem. QED

Part II of this book describes how to create resource profiles from which performance problems cannot hide.

In Case You've Heard That More Memory Makes All Your Performance
Problems Go Away

Example 1-4 brings to mind the first "tuning" class I ever attended. The year was 1989, during one of my
first weeks as a new Oracle Corporation employee. Our instructor advised us that the way to tune an
Oracle query was simple: just eliminate physical I/O operations. I asked, "What about memory
accesses?", referring to a big number in the query column of the tkprof output we were looking at. Our
instructor responded that fetches from memory are so fast that their performance impact is negligible. I
thought this was a weird answer, because prior to the beginning of my Oracle career, I had tuned a lot of
C code. One of the most important steps in doing that job was eliminating unnecessary memory accesses
[Dowd (1993)].

Example 1-4 illustrates why eliminating unnecessary memory accesses should be a priority for you, too.
Unnecessary memory accesses consume response time. Lots of them can consume lots of response time.
With 2GHz CPUs, the code path associated with each Oracle logical I/O operation (LIO) typically
motivates tens of microseconds of user-mode CPU time consumption. Therefore, a million LIOs will
consume tens of seconds of response time. Excessive LIO processing inhibits system scalability in a
number of other ways as well, as I explain in Parts II and III of this book. See [Millsap (2001c)] for even
more information.

Page 5 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-1-SECT-4

Page 6 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 1. A Better Way to Optimize

1.5 Method R

The real goal of this book is not just to help you make an Oracle system go faster. The real goal of this book is to
optimize the project that makes an Oracle system go faster. I don't just want to help you make one system faster. I
want to help you make any system faster, and I want you to be able to accomplish that task in the most economically
efficient way possible for your business. Method R is the method I will describe by which you can achieve this goal.
Method R is in fact the basis for the remainder of this book.

Method R is conceptually very simple. As you should expect, it is merely a formalization of the simple "Work first to
reduce the biggest response time component of a business' most important user action" objective that you've seen
many times by now.

1.5.1 Who Uses the Method

An immediately noticeable distinction of Method R is the type of person who will be required to execute it. Method R
specifically can not be performed in isolation by a technician who has no interest in your business. As I have said, the
goal of Method R is to improve the overall value of the system to the business. This goal cannot be achieved in
isolation from the business. But how does a person who leads the execution of Method R fit into an information
technology department?

1.5.1.1 The abominable smokestack

Most large companies organize their technical infrastructure support staff in a manner that I call the "abominable
smokestacks," like the departmental segmentation shown in Figure 1-2. Organizational structures like this increase the
difficulty of optimizing the performance of a system, for one fundamental reason:

Compartmentalized organizational units tend to optimize in isolation from other organizational units,
resulting in locally optimized components. Even if they succeed in doing this, it's not necessarily good
enough. A system consisting of locally optimized components is not necessarily itself an optimized
system.

One of Goldratt's many contributions to the body of system optimization knowledge is a compelling illustration of
how local optimization does not necessarily lead to global optimization [Goldratt (1992)].

Method R: A Response Time-Based Performance Improvement Method
That Yields Maximum Economic Value to Your Business

1. Select the user actions for which the business needs improved performance.

2. Collect properly scoped diagnostic data that will allow you to identify the causes of response time
consumption for each selected user action while it is performing sub-optimally.

3. Execute the candidate optimization activity that will have the greatest net payoff to the business.
If even the best net-payoff activity produces insufficient net payoff, then suspend your
performance improvement activities until something changes.

4. Go to step 1.

Page 1 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Figure 1-2. Typical organizational structure for a technical infrastructure department

The smokestack mentality is pervasive. Even the abstract submission forms we use to participate in Oracle
conferences require that we choose a smokestack for each of our presentations (conference organizers tend to call
them tracks instead of smokestacks). There is, for example, one track for papers pertaining to database tuning, and a
completely distinct track for papers pertaining to operating system tuning. What if a performance optimization
solution requires that attention be paid iteratively to both components of the technology stack? I believe the mere
attempt at categorization discourages analysts from considering such solutions. At least analysts who do implement
solutions that span stack layers are ensured of having a difficult time choosing the perfect track for their paper
proposals.

One classic aspect of segmentation is particularly troublesome for almost every Oracle
system owner I've ever talked with: the distinction between application developers and
database administrators. Which group is responsible for system performance? The answer
is both. There are performance problems that application developers will not detect
without assistance from database administrators. Likewise, there are performance
problems that database administrators will not be able to repair without assistance from
application developers.

The Goal

One inspiration behind Method R is the story told in Eli Goldratt's The Goal [Goldratt (1992)]. The Goal
describes the victory of a revolutionary new performance optimization method over a method that is
culturally ingrained but produces inferior results. Goldratt's method applies to factory optimization, but
his story is eerily reminiscent of what the Oracle community is going through today: the overthrow of an
optimization method based upon a faulty measurement system.

The Goal dismantles a lot of false ideas that a lot of analysts think they "know" about optimization. Two
of the most illuminating lessons that I learned from the book were:

� Cost accounting practices often promote bad optimization decisions. Oracle practitioners use cost
accounting practices when they target a system's hit ratios for optimization.

� A collection of optimized components is itself not necessarily optimized. This explains why
systems with 100% "best in class" componentry can have performance problems. It explains why
so many slow Oracle systems have dozens of component administrators standing behind them
who each swears that his component "can't possibly be the cause of a performance problem."

Page 2 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

1.5.1.2 The optimal performance analyst

A company's best defense against performance problems begins with a good performance analyst who can diagnose
and discourse intelligently in all the layers of the technology stack. In the context of Figure 1-2, this person is able to
engage successfully "in the smoke." The performance analyst can navigate above the smokestacks long enough to
diagnose which pipes to dive into. And the best analyst has the knowledge, intelligence, charisma, and motivation to
drive change in the interactions among smokestacks once he's proven where the best leverage is.

Of the dozens of great Oracle performance analysts I've had the honor of meeting, most share a common set of
behavioral qualities that I believe form the basis for their success. The best means I know for describing the
capabilities of these talented analysts is a structure described by Jim Kennedy and Anna Everest [Kennedy and
Everest (1994)], which decomposes personal behavioral qualities into four groups:

Education/experience/knowledge factors

In the education/experience/knowledge category, the capabilities required of the optimal analyst are
knowledge of the business goals, processes, and user actions that comprise the life of the business. The
optimal analyst knows enough about finance to understand the types of input information that will be required
for a financially-minded project sponsor to make informed investment decisions during a performance
improvement project. And the optimal analyst of course understands the technical components of his
application system, including the hardware, the operating system, the database server, the application
programs, and any other computing tiers that join clients to servers. I describe many important technical
factors in Part II of this book.

Intellectual factors

The optimal performance analyst exhibits several intellectual factors as well. Foremost, I believe, is the strong
sense of relevance—the ability to understand what's important and what's not. Sense of relevance is a broad
category. It combines the attributes of perceptiveness, common sense, and good judgment. General problem
solving skills are indispensable, as is the ability to acquire and assimilate new information quickly.

Interpersonal factors

The optimal performance analyst exhibits several interpersonal factors. Empathy is key to acquiring accurate
information from users, business owners, and component administration staff. Poise is critical for maintaining
order during a performance crisis, especially during the regularly scheduled panic phase of a project. Self-
confidence is necessary to inspire adequate morale among the various project victims and perpetrators to
ensure that the project is allowed to complete. The optimal analyst is tactful and successful in creating
collaborative effort to implement a solution plan.

Motivational factors

Finally, the optimal performance analyst exhibits several important motivational factors. She is customer
oriented and interested in the business. She enjoys a difficult challenge, and she is resourceful. I have found
the best performance analysts to be always mindful that technical, intellectual, interpersonal, and motivational
challenges are all surmountable, but that different problem types often require drastically different solution
approaches. The best performance analysts seem not only to understand this, but to actually thrive on the

If you haven't read The Goal, then I think you're in for a real treat. If you have read it already, then
consider reading it again with the intent to apply what you read by analogy to the world of Oracle
performance. The cover says that "Goal readers are now doing the best work of their lives." This
statement is a completely accurate portrayal of my personal relationship with the book.

Page 3 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

variety.

1.5.1.3 Your role

As a result of buying this book, I want you to become so confident in your performance problem diagnosis skills that
a scenario like the following doesn't scare you one bit:

Scene: Big meeting. Participants include several infrastructure department managers, you, and a special
guest: the CEO, whose concerns about online order form performance are critical enough that he has
descended upon your meeting to find out what you're going to do about it....

Senior manager of the system administration department ("System manager"): In two weeks, we're
going to upgrade our CPU capacity, at a cost to the business of US$65,000 in hardware and upgraded
software license fees. However, we expect that because we're doubling our CPU speeds, this upgrade
will improve performance significantly for our users.

CEO: (Nods.) We must improve the performance of our online order form, or we'll lose one of our
biggest retail customers.

You: But our online order form consumes CPU service for only about 1.2 seconds of the order form's
45-second commit time. Even if we could totally eliminate the response time consumed by CPU
service, we would make only about a one-second improvement in the form's response time.

System manager: I disagree. I think there are so many unexplained discrepancies in the response time
data you're looking at that there's no way you can prove what you're saying.

You: Let's cover this offline. I'll show you how I know.

(Later, after reconvening the meeting.)

System manager: Okay, I get it. He's right. Upgrading our CPU capacity won't help order form
performance in the way that we'd hoped.

You: But by modifying our workload in a way that I can describe, we can achieve at least a 95%
improvement in the form's commit response time, without having to spend the money on upgrading our
CPUs. As you can see in this profile of the order form's response time, upgrading CPU capacity
wouldn't have helped us here anyway.

I've witnessed the results of a lot of conversations that began this way but never veered back on-course when it was
the You character's first turn to speak. The result is often horrifying. A company works its way through the alphabet in
search of something that might help performance. Sometimes it stops only when the company runs out of time or
money, or both.

Perhaps even more painful to watch is the conversation in which the You character does speak up on cue but then is
essentially shouted down by a group of people who don't believe the data. Unless you can defend your diagnostic data
set all the way to its origin—and how it fits in with the data your debaters are collecting—you stand a frighteningly
large chance of losing important debates, even when you're right.

1.5.2 Overcoming Common Objections

I hope that I've written this book effectively enough that you will want to try Method R on your own system. If you
can work alone, then most of the obstacles along your way will be purely technical, and you'll probably do a great job
of figuring those out. I've tried hard to help you overcome those with the information in this book.

However, it's more likely that improving the performance of your system will be a collaborative effort. You'll
probably have to engage your colleagues in order to implement your recommendations. The activities you recommend

Page 4 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

as a result of using Method R will fall into one of two categories:

� Your colleagues have heard the ideas before and rejected them

� They've never heard the ideas before

Otherwise, your system would have been fixed by now. Either way, you will probably find yourself in an environment
that is ready to challenge your ideas. To make any progress, you will have to justify your recommendations in
language that makes sense to the people who doubt you.

The most effective ways I've found to justify such recommendations are:

Proof-of-concept tests

There's no better way to prove a result than to actually demonstrate it. Dave Ensor describes this as the
Jeweler's Method. Any good jeweler will place interesting merchandise into a prospective customer's hands as
early in the sales process as possible. Holding the piece activates all the buyer's senses in appreciating the
beauty and goodness of the thing being sold. The buyer's full imagination goes to work for the seller as the
buyer locks in on the vision of how much better life will become if only the thing being held can be obtained.
The method works wonderfully for big-ticket items, including jewelry, cars, houses, boats, and system
performance. There's probably no surer way to build enthusiasm for your proposal than to let your users
actually feel how much better their lives will become as a result of your work.

Direct statistics that make sense to end users

If proof-of-concept tests are too complicated to provide, the next best thing is to speak in direct statistics that
make sense to end users. There are only three acceptable units of measure for such statistics:

� Your local currency

� The duration by which you'll improve someone's response time

� The number of business actions per unit of time by which you'll improve someone's throughput

Any other measure will cause one of two problems. Either your argument will be too weak to convince the
people you're trying to persuade, or, worse yet, you'll succeed in your persuasions, but because you were
thinking in the wrong units of measure you'll risk producing end results with inadequate "real" benefit. Real
benefit is always measured in units of either money or time. Succeeding in your proposal but failing in your
end result of course causes an erosion of your credibility for future recommendations.

Track record of actualized predictions

If you have the luxury of a strong reputation to enhance your persuasive power, then merely making your
wishes known may be enough to inspire action. However, if this is the case, beware. Every prediction you
make runs the risk of eroding your credibility. Even if you have the power to convert your instructions into
other people's tasks, I strongly encourage you to assess your recommendations privately using proof-of-

Justifying your recommendations this way is healthy for you to do anyway, even in the
friendliest of environments where your words become other people's deeds almost
instantaneously.

Page 5 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

concept tests or direct statistics that make sense to end users. Don't borrow from the account of your own
credibility until you're certain of your recommendations.

1.5.2.1 "But my whole system is slow"

At hotsos.com, we use Method R for our living. After using the method many times, I can state categorically that the
most difficult step of Method R is one that's not even listed: it is the step of convincing people to use it. The first
objection my colleagues and I encounter to our focus on user actions is as predictable as the sunrise:

"But my whole system is slow."

"I need to tune my whole system, not just one user."

"When are you going to come out with a method that helps me tune my whole system?"

We hear it everywhere we go.

What if the whole system is slow? Practitioners often react nervously to a performance improvement method that
restricts analysis to just one user action at a time. Especially if users perceive that the "whole system" is slow, there is
often an overwhelming compulsion to begin an analysis with the collection of system-wide statistics. The fear is that
if you restrict the scope of analysis to anything less than the entire system, you might miss something important. Well,
in fact, a focus on prioritized user actions does cause you to miss some things:

A focus on high-priority user actions causes you to overlook irrelevant performance data. By
"irrelevant," I mean any data that would abate your progress in identifying and repairing your system's
most important performance problem.

Here's why Method R works regardless of whether a system's problem is an individual user action or a whole mess of
different user actions. Figure 1-3 shows the first information that analysts get when they learn of system performance
problems. Legitimate information about performance problems usually comes first from the business in the form of
user complaints.

Figure 1-3. What performance analysts first see when there's a performance problem. Shaded circles represent

user actions that are experiencing performance problems

Upon receipt of such information, the first impulse of most analysts is to establish a cause-effect relationship between
the symptoms being observed and one or more root causes that might be motivating the symptoms. I wholeheartedly
agree that this step is the right step. However, many projects fail because analysts fail to establish the correct cause-
effect relationships. A core strength of Method R is that it allows you to determine cause-effect relationships more
quickly and accurately than with any other method.

Figure 1-4 shows why. It depicts three possible sets of cause-effect relationships between problem root causes and
performance problem symptoms. Understanding the effectiveness of Method R for each of these scenarios compared
to conventional tuning methods will help you decide for yourself whether Method R is an effective system-wide

It is possible for information providers to be the first to know about performance
problems. In Chapter 9 I describe one way in which you can acquire such a priori
knowledge. But it is rare for information providers to know about performance problems
before their information consumers tell them.

Page 6 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

optimization or not. The three possible scenarios depicted in Figure 1-4 are:

� At one extreme, case (a) depicts that every user-discernible symptom on the system is caused by a single
"universal" root cause.

� In case (b), there is a many-to-many relationship between symptoms and root causes. Some symptoms have
two or more contributory root causes, and some root causes contribute to more than one symptom.

� At the other extreme, case (c) depicts a situation in which every symptom is linked to its own distinct root
cause. No single root cause creates negative performance impact for more than one user action.

Figure 1-4. Three possible sets of cause-effect relationships (depicted by arrows) between root causes and
performance problem symptoms

Of course it is easy to draw pictures of cause-effect relationships between root causes and performance problem
symptoms. It's another matter entirely to determine such cause-effect relationships in reality. The ability to do this is, I
believe, the most distinguishing strength of Method R. Let me explain.

For problems resembling Figure 1-4(a), Method R works quite well. Even if you were to completely botch the
business prioritization task inherent in the method's step 1, you'd still stumble upon the root cause in the first
diagnostic data you examined. The reason is simple. If all symptoms have the same root cause, then no matter which
symptom you investigate, you'll find the single, universal root cause in that symptom's response time profile.

Method R also works well for problems resembling Figure 1-4(b) and (c). In these cases, the only way to provide
system-wide relief is to respond to each of the root causes that contributes to a symptom. Constraints on analyst labor
(your time) probably make it impossible to respond to all the symptoms simultaneously, so it will probably be
important to prioritize which activities you'll conduct first. This requirement is precisely the motive for the work
prioritization inherent in Method R. Remembering that the true goal of any performance improvement project is
economic, the proper way to prioritize the project activities is to respond to the most important symptoms first.
Method R is distinctive in that it encourages alignment of project priorities with business priorities.

By contrast, let's examine the effectiveness of Method C for each of the same three scenarios. Remember, the first
step of Method C is:

Hypothesize that some performance metric x has an unacceptable value.

In the context of Figure 1-4, this step is analogous to searching for the shaded circles in the portion of the diagram
labeled root causes. After identifying probable root causes of performance problems, Method C next requires the
analyst to establish a cause-effect relationship between root causes and symptoms. One problem with Method C is
that it forces you to compute this cause-effect relationship rather more by accident than by plan. The conventional
method for determining this cause-effect relationship is literally to "fix" something and then see what impact you

Page 7 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

created. It's a trial-and-error approach.

The challenge to succeeding with Method C is how quickly you can identify the right "unacceptable" system metric
value. The longer it takes you to find it, the longer your project will drag on. Certainly, your chances of finding the
right problem to solve are greatest when there's only one problem in the whole system. However, it's not certain that
finding the root cause will be easy, even in an "easy" case like Figure 1-4(a). Just because there's only one root cause
for a bunch of problems doesn't mean that there will be only one system-wide performance statistic that looks
"unacceptable."

The real problem with Method C becomes apparent when you consider its effectiveness in response to the cases
shown in Figure 1-4(b) and (c). In both of these cases, when we look "from the bottom up," there are several potential
root causes to choose from. How will you determine which root cause to work on first? The best prioritization scheme
would be to "follow the arrows" backward from the most important business symptoms to their root causes. The root
causes you'd like to address first are the ones causing the most important symptoms.

However, Method C creates a big problem for you at this point:

System-wide performance metrics provide insufficient information to enable you to draw the cause-
effect arrows.

You cannot reliably compute the cause-effect relationships shown in Figure 1-4 unless you measure response time
consumption for each user action—"from the top down" in the context of the drawing. Understanding what
information is required to draw the cause-effect arrows reveals both the crippling flaw of Method C and the distinctive
strength of Method R. It is impossible to draw the cause-effect arrows reliably from root causes to symptoms (from
the bottom to the top). However, it is very easy to draw the arrows from symptoms to root causes (from the top
down), because the resource profile format for targeted user actions tells you exactly where the arrows belong.

Without the cause-effect arrows, a project is rudderless. Any legitimate prioritization of performance improvement
activities must be driven top-down by the economic priorities of the business. Without the arrows, you can't prioritize
your responses to the internal performance metrics you might find in your Statspack reports. Without the arrows,
about the only place you can turn is to "cost accounting" metrics like hit ratios, but unfortunately, these metrics don't
reliably correspond to the economic motives of the business. The Oracle Payroll situation that I described earlier in
this chapter was rudderless for three months. The project concluded on the day that the team acquired the data shown
in Example 1-3.

The reason Method R works so well in system-wide performance crises is that your "whole system" is not a single
entity; it's a collection of user actions, some more important than others. Your slow user actions may not all be slow
for the same reason. If they're not, then how will you decide which root cause to attack first? The smart way is by
prioritizing your user actions in descending order of value to your business. What if all your slow user actions actually
are caused by the same root cause? Then it's your lucky day, because the first diagnostic data you collect for a single
process is going to show you the root cause of your single system-wide performance problem. When you fix it for one
session, you'll have fixed it for every session. Table 1-1 summarizes the merits of conventional methods versus the
new method.

Ironically, then, the popular objection to Method R actually showcases the method's
greatest advantage. We in fact designed Method R specifically to respond efficiently to
systems afflicted with several performance root causes at once.

Table 1-1. The merits of Method C and Method R. Method R yields its greatest comparative advantage when
"the whole system is slow"

Figure
1-4 case Method C effectiveness Method R effectiveness

Effective in some cases. Existence of only one Effective. Even if business prioritization is

Page 8 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

1.5.2.2 "The method only works if the problem is the database"

Another common objection to Method R is the perception that it is incapable of finding and responding to
performance problems whose root causes originate outside the database tier. In a world whose new applications are
almost all complicated multi-tier affairs, this perception causes a feeling that Method R is severely limited in its
effective scope.

Method R itself is actually not restricted at all in this manner. Notice that nowhere in the four-step method is there any
directive to collect response time data just for the database. The perception of database focus arises in the
implementation of step 2, which is the step in which you will collect detailed response time diagnostic data. This
book, as you shall see, provides coverage only of the response time metrics produced specifically by the Oracle
kernel. There are several reasons for my writing the book this way:

� When performance problems occur, people tend to point the finger of blame first at the least well-understood
component of a system. Thus, the Oracle database is often the first component blamed for performance
problems. The Oracle kernel indeed emits sufficient diagnostic data to enable you to prove conclusively
whether or not a performance problem's root cause lies within the database kernel.

� At the time of this writing, the Oracle kernel is in fact the most robustly instrumented layer in the technology
stack; however, many analysts fail to exploit the diagnostic power inherent in the data this instrumentation
emits. Oracle's diagnostic instrumentation model is very robust in spite of its simplicity and efficiency
(Chapter 7). Vendors of other layers in the application technology stack have already begun to catch onto this
notion. I believe that the response time diagnostic instrumentation built into the Oracle kernel will become the
standard model for instrumenting other application tiers.

Even without further instrumentation of non-database tiers, if your performance problem is in the database, Method R
helps you solve it quickly and efficiently. If your problem is not caused by something going on in your database, then
Method R helps you prove that fact quickly and efficiently. Regardless of where in your architecture your root cause
resides, Method R prevents you from trying to fix the wrong problem.

The proof is in the experience. Method R routinely leads us to the doorstep of problems whose repair must be enacted
either inside or outside of the database, including such cases as:

� Query mistakes caused by inefficiently written application SQL statements, poor data designs, ill-advised
indexing strategies, data density mistakes, etc.

� Application software mistakes caused by excessive parsing, poorly designed serialization (locking)
mechanisms, misuse (or disuse) of array processing features, etc.

� Operational mistakes caused by errors in collection of statistics used by the cost-based optimizer, accidental
schema changes (e.g., dropped indexes), inattention to full file systems, etc.

� Network mistakes caused by software configuration mistakes, hardware faults, topology design errors, etc.

� Disk I/O mistakes caused by poorly sized caches, imbalances in I/O load to different devices, etc.

(a)
problem root cause increases the likelihood that this
root cause will be prominent in the analysis of system-
wide statistics.

performed incorrectly, the method will
successfully identify the sole root cause on the
first attempt.

(b)
Unacceptable. Inability to link cause with effect means
that problems are attacked "from the bottom up" in an
order that may not suit business priorities.

Effective. Business prioritization of user
actions ensures that the most important root
cause will be found and addressed first.

(c) Unacceptable. Same reasons as for (b). Effective. Same reasons as above.

Page 9 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

� Capacity planning mistakes resulting in capacity shortages of resources like CPU, memory, disk, network, etc.

1.5.2.3 "The method is unconventional"

Even if Method R could prove to be the best thing since the invention of rows and columns, I expect for some pockets
of resistance to exist for at least a couple of years after the publication of this book. The method is new and different,
and it's not what people are accustomed to seeing. As more practitioners, books, and tools adopt the techniques
described in this book, I expect that resistance will fade. In the meantime, some of your colleagues are going to
require careful explanations about why you're recommending a completely unconventional performance optimization
method that doesn't rely on Statspack or any of the several popular performance monitoring tools for which your
company may have paid dearly. They may cite your use of an unconventional method as one of the reasons to reject
your proposals.

One of my goals for this book is certainly to arm you with enough knowledge about Oracle technology that you can
exploit your data to its fullest diagnostic capacity. I hope by the end of this book I'll have given you enough
ammunition that you can defend your recommendations to the limit of their validity. I hope this is enough to level the
playing field for you so that any debates about your proposed performance improvement activities can be judged on
their economic merits, and not on the name of the method you used to derive them.

1.5.3 Evaluation of Effectiveness

Earlier in this chapter, I listed eight criteria against which I believe you should judge a performance improvement
method. I'll finish the chapter by describing how Method R has measured up against these criteria in contrast to
conventional methods:

Impact

Method R causes you to produce the highest possible impact because you are always focused on the goal that
has meaning to the business: the response time of targeted user actions.

Efficiency

Method R provides excellent project efficiency because it keeps you focused on the top priorities for the
business, and because it allows you to make fully informed decisions during every step of the project. Project
efficiency is in fact the method's key design constraint.

Measurability

Method R uses end-user response time as its measurement criterion, not internal technical metrics that may or
may not translate directly to end-user benefit.

Predictive capacity

Method R gives the unprecedented ability to predict the impact of a proposed tuning activity upon a targeted
user action, without having to invest in expensive experimentation.

Reliability

Method R performs reliability in virtually every performance problem situation imaginable; a distinction of
the method is its ability to pinpoint the root cause of any type of performance problem without having to resort
to experience, intuition, or luck.

Page 10 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-1-SECT-5

Determinism

Method R eliminates diagnostic guesswork first by maintaining your focus on business priority, and second by
providing a foolproof method for determining the true relationships between problem symptoms and their root
causes.

Finiteness

Method R has a clearly stated termination condition. The method provides the distinctive capacity to prove
when no further optimization effort is economically justifiable.

Practicality

Method R is a teachable method that has been used successfully by hundreds of analysts of widely varying
experience levels to resolve Oracle performance problems quickly and permanently.

The next chapters show you how to use Method R.

Page 11 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 2. Targeting the Right User Actions

2.1 Specification Reliability

A project specification can be called "reliable" only if any project that successfully fulfills the letter of that
specification also fulfills the specification's true intent. Unfortunately, the most commonly used specifications for
performance improvement projects are unreliable. Examples of specifications include:

� Distribute disk I/O as uniformly as possible across many disk drives.

� Ensure that there is at least x% of unused CPU capacity during peak hours.

� Increase the database buffer cache hit ratio to at least x%.

� Eliminate all full-table scans from the system.

Each of these specifications is unreliable because the letter of each specification can be accomplished without actually
producing a desired impact upon your system. There is a simple game that enables you to determine whether you have
a reliable specification or not:

To establish whether or not the specification for a performance improvement project is reliable, ask
yourself the question: "Is it possible to achieve the stated goal (the specification) of such a project
without actually improving system performance?"

One easy way to get the game going is to imagine the existence of an evil genie. Is it possible for an evil genie to
adhere to the letter of your "wish" (the project specification) while producing a project result that actually contradicts
your obvious underlying goal? If the evil genie can create a system on which she could meet your project
specification but still produce an unsatisfactory performance result, then the project specification has been proved
unreliable.

The evil genie game is a technique employed in thought experiments by René Descartes in the 1600s and, more
recently, by Elizabeth Hurley's character in the film Bedazzled. Here's how the evil genie game can play out for the
bad specifications listed earlier:

Distribute disk I/O as uniformly as possible across many disk drives

This specification is a perfectly legitimate goal for trying to prevent performance problems when you are
configuring a new system, but it is an unreliable specification for performance improvement projects. There
are many systems on which making significant improvement to disk I/O performance will cause either
negligible or even negative performance impact.

For example, imagine a system in which each of the most important business processes needing performance
repair consumes less than 5% of the system's total response time performing disk I/O operations. (We have
hundreds of trace files that fit this description at www.hotsos.com.) On such a system, no amount of I/O
"tuning" can create meaningful response time improvement of more than 5%. Since distributing disk I/O
uniformly across many disk drives can result in a system without meaningfully improved performance, this
specification is unreliable.

Ensure that there is at least x% of unused CPU capacity during peak hours

Page 1 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

There are several ways that an evil genie could accomplish this goal without helping the performance of your
system. One way is to introduce a horrific disk I/O bottleneck, such as by placing the entire database on one
gigantic disk drive with excessively poor I/O-per-second capacity. As more and more user processes stack up
in the disk I/O queue, much CPU capacity will go unused. Since increasing the amount of unused CPU can
result in worse performance, this specification is unreliable.

Increase the database buffer cache hit ratio to at least x%

This one's easy: simply use Connor McDonald's innovative demonstration that I include in Appendix B. The
application will show you how to increase your database buffer cache hit ratio to as many nines as you like, by
adding CPU-wasting unnecessary workload. This additional wasted workload will of course degrade the
performance of your system, but it will "improve" your buffer cache hit ratio. Connor's application is, of
course, a trick designed to demonstrate that it is a mistake to rely on the buffer cache hit ratio as a measure of
system "goodness." (I happen to know that Connor is definitely not evil, although I have on occasion noticed
him exhibit behavior that is at least marginally genie-like.)

There are subtler ways to degrade a system's performance while "improving" its cache hit ratio. For example,
SQL "tuners" often do it when they engage in projects to eradicate TABLE SCAN FULL row source operations
(discussed again in the next specification I'll show). Another way an evil genie could improve your cache hit
ratio in a way that harms performance is to reduce all your array fetch sizes to a single row [Millsap (2001b)].
Because it is so easy to increase the value of your buffer cache hit ratio in ways that degrade system
performance, this specification is particularly unreliable.

Eliminate all full-table scans from the system

Unfortunately, many students of SQL performance optimization learn early the untrue rule of thumb that "all
full-table scans are bad." An evil genie would have an easy time concocting hundreds of SQL statements
whose performance would degrade as TABLE SCAN FULL row source operations were eliminated [Millsap
(2001b); (2002)]. Because eliminating full-table scans can actually degrade performance, the action is an
unreliable basis for a performance improvement project specification.

The cure for unreliable performance improvement specifications is conceptually simple. Just say what you mean. But
of course, by the same logic, golf is simple: just hit the ball into the hole every time you swing. The problem in curing
unreliable performance improvement specifications is to figure out how to specify what you really mean in a manner
that doesn't lead to other errors. For example, a performance specification that comes closer to saying what you really
mean is this one:

Make the system go faster.

However, even this specification is unreliable. I've seen dozens of projects with this specification result in ostensible
success but practical failure. For example, a consultant finds, by examining V$SQL, a batch job that consumes four
hours. He "tunes" it so that it runs in 30 minutes. This is a project success; the consulting engagement summary says
so. However, the success was meaningless. The batch program was already as fast as it needed to be, because it ran in
an otherwise vacant eight-hour batch window. The expensive input into performance improvement (the consultant's
fee) produced no positive value to the business.

Worse yet, I've seen analysts make some program A go faster, but at the expense of making another vastly more
important program B go slower. Many systems contain process interdependencies that can cause this situation. On
these systems, "tuning" the wrong program not only consumes time and money to execute the tuning project, it results
in actual degradation of a system's value to the business (see Section 12.1 for an example).

This "make the system go faster" specification is just too vague to be useful. In my service line management role at
Oracle Corporation, I had many discussions about how to specify projects—the whole idea of packaged services
requires contract-quality specification of project goals. Most participants in those meetings understood very quickly
that "make the system go faster" is too vague. What I find remarkable today is that most of these people saw the
vagueness in entirely the wrong place.

Page 2 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Most people identify the go faster part of the specification as the root of the problem. People commonly suggest that
"make the system go faster" is deficient because the statement doesn't say, numerically, how much faster. In my
Oracle meetings, explorations of how to improve "make the system go faster" generally led to discussion of various
ways to measure actual and perceived speeds, ways to establish "equivalency" metrics such as count-based utilization
measures (like hit ratios), and so on. Of course, the search for "equivalency" measures finds a dead end quickly
because—if you execute the evil genie test correctly—such presumed equivalency measures are usually unreliable.

Figuring out how much faster a system "needs to go" often leads into expensive project rat holes. (An exception is
when an analyst has found the maximum allowable service time for an operation by using a model like the queueing
theory one that I describe in Chapter 9.) When our students today discuss the "make the system go faster" spec, it
usually takes very little leading for students to realize that the real problem is actually hidden in the word system. For
example, consider the following commonly suggested "improvements" to the original "make the system go faster"
specification:

� Make the system go 10% faster.

� Make the system complete all business functions in less than one second.

First of all, each specification expressed in this style is susceptible to the same evil genie tricks as the original spec.
But by adding detail, we've actually weakened the original statement. For example:

Make the system go 10% faster

Do you really expect that every business transaction on the system can go 10% faster? Even those that perform
only a couple of Oracle logical I/O calls (LIOs) to begin with? On the other hand, is 10% really enough of an
improvement for an online query that consumes seventeen minutes of response time?

Make the system complete all business functions in less than one second

Is it really good enough for a single-row fetch via a primary key to consume 0.99 seconds of response time?
On the other hand, is it really reasonable to expect that an Oracle application should be able to emit a 72-page
report in less than one second?

Do these two formats actually lead to an improvement of the original "make the system go faster" specification? They
do not. A bigger problem is actually the lack of definition for the word "system."

2.1.1 The System

What is the system? Most database and system administrators interpret the term much differently than anyone else in
the business does. To most database and system administrators, the system is a complex collection of processes and
shared memory and files and locks and latches, and all sorts of technical things that can be measured by looking at "V$
tables" and operating system utilities and maybe even graphical system monitoring dashboards. However, nobody else
in the business sees a system this way. A user thinks of the system as the collection of the few forms and batch jobs in
that user's specific job domain. A manager thinks of the system as a means for helping improve the efficiency of the
business. To users and managers, the redness, yellowness, or greenness of your dashboard dials is completely and
utterly irrelevant.

Here's a simple test to determine for yourself whether I'm telling the truth. Try to imagine yourself as a user who has
just waited two hours past your reporting deadline this morning because your "fifteen-minute report" required three
full hours to run. Try to imagine your reaction to a database administrator who would say the following words in front
of your colleagues during a staff meeting: "There was absolutely nothing wrong with the system while your report
was running, because all our dashboard dials were green during the entire three-hour period."

Please remember this when you are acting in the role of performance analyst: a system is a collection of end-user
programs. An end-user is watching each of these programs attentively. (If no one is watching a particular program

Page 3 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-2-SECT-1

attentively, then it should be running only during off-peak time periods, or perhaps not at all.) The duration that each
program requires to deliver a requested chunk of business value is that program's response time. The response time of
an individual user action is practically the only performance metric that your business cares about. Hence:

Response time for an end-user action is the first metric that you should care about.

2.1.2 Economic Constraints

When you eliminate the ambiguity of the word "system," you take one big step closer to a foolproof goal:

Improving the performance of program A during the weekday 2:00 p.m. to 3:00 p.m. window is critical
to the business. Improve the performance of A as much as possible for this time period.

But is this specification evil genie-proof? Not yet. Imagine that the average run time of program A is two minutes.
Suppose that the evil genie could reduce the response time from two minutes to 0.25 seconds. Great... But at a cost of
$1,000,000,000. Oops. Maybe improving response time only to 0.5 seconds would have been good enough and would
only have cost $2,000. The specification omits any mention of an economic constraint.

There is an optimization project specification that I believe may actually be evil genie-proof. It is the optimization
goal described by Eli Goldratt in [Goldratt (1992), 49]:

Make money by increasing net profit, while simultaneously increasing return on investment, and
simultaneously increasing cash flow.

This specification gives us the ultimate acid test by which to judge any other project specification. However, it does
fall prey to the same "hit the ball into the hole on every swing" lack of detail that I discussed earlier.

Page 4 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part I: Method

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-2

Chapter 2. Targeting the Right User Actions

One of the first steps in any project is to figure out what the project is supposed to accomplish. The formal written
result of figuring out the project's goal is called the project's specification. An Oracle performance improvement
project, like all sorts of other projects, needs a specification. Otherwise, you have nothing that you can use to measure
the success or failure of your project.

Many Oracle performance improvement projects are crippled from their beginnings with poor specifications. You've
probably seen the cartoon in which a programmer's manager says, "You start coding. I'll go find out what they want."
A lot of people try to "tune their systems" without ever really knowing what they're out to accomplish. On the other
hand, there's no need for a system to languish for months while analysts try to construct the "ultimate" project
specification, charging time and materials rates while they inch forward. Constructing a good specification for an
Oracle performance improvement project should usually consume no more than a couple of hours.

The aim of this chapter is to help you get your performance improvement project started on the right foot, so that your
project will optimize the economic value of a system. I'll explore some bad project specifications and explain why
they hurt the projects they were supposed to help. I'll describe some specifications that have worked well, resulting in
projects that have quickly created great positive economic impact to their systems. Throughout the chapter, I'll list
some attributes that have distinguished good specifications from bad ones.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 2. Targeting the Right User Actions

2.2 Making a Good Specification

Let's stop fooling around with faulty project specifications and start constructing some good ones. It shouldn't take
you more than a couple of hours to create a good specification for most performance improvement projects. Here's
how:

1. Identify the user actions that the business needs you to optimize, and identify the contexts in which those
actions are important.

2. Prioritize these user actions into buckets of five.

3. For each of the actions in your top bucket, determine whom you can observe executing the action in its
suboptimal context and when you can make the observation.

2.2.1 User Action

In this book, I try to make a careful distinction between user actions, programs, and Oracle sessions. A user action is
exactly what it sounds like: an action executed by a user. Such an action might be the entry of a field in a form or the
execution of one or more whole programs. A user action is defined as some unit of work whose output and whose
performance have meaning to the business. The notion of user action is especially important during project
specification because the user action is precisely the unit of work that has business meaning.

A program is of course a sequence of computer instructions that carries out some business function. A user action
might be a program, a part of a program, or multiple programs. An Oracle session is a specific sequence of database
calls that flow through a connection between a user process and an Oracle instance. A program can initiate zero or
more Oracle sessions, and in some configurations, more than one program can share a single Oracle session. The
notion of an Oracle session is important during data collection because the Oracle kernel keeps track of performance
statistics at the Oracle session level.

2.2.2 Identifying the Right User Actions and Contexts

The first step in your specification is to identify the user actions that the business needs you to optimize. If you mess
up this step, it is likely that your performance improvement project will fail. It is vital for you to obtain a list of
specific user actions. The ones you select should be the ones that are the most important in the business's pursuit of
net profit, return on investment, and cash flow.

I emphasize "that the business needs you to optimize" because you are specifically not looking for a database
administrator's opinion about performance at this point. One of the most common mistakes that Oracle performance
analysts make is that they consult their V$ views to learn where their system needs "tuning." Your V$ views can't tell
you. I'll describe in Chapter 3 some of the technical reasons why it's unreliable to consult your V$ views for this
information.

Finding out what your business needs is usually easy. It is almost never the result of a long goal-definition project. It
is almost always the result of asking a business leader who speaks in commonsense language, "If we could make one

Oracle does make a distinction between a connection (a communication pathway) and a
session. You can be connected to Oracle and not have any sessions. On the other hand,
you can be connected and have many simultaneous sessions on that single connection.

Page 1 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

program faster by the end of work today, which program would you choose?" The following examples illustrate the
type of response that you're looking for:

� We manufacture disk drives. We have a warehouse full of disk drives that are ready to ship. We receive
hundreds of telephone calls each morning from angry customers who placed orders with us over two weeks
ago, demanding to know the status of their shipments. At any given time, there is an average of over two
dozen empty FedEx trucks parked at our loading dock. If you go down to the loading dock, you can see that
our packers and the truck drivers are sitting on boxes drinking coffee right now. They can't load the boxes on
the trucks because the program that prints shipping labels is too slow. Our business's most important
performance problem is the program that prints shipping labels.

� We're spending too much on server license and maintenance fees. We have 57 enterprise-class servers in our
shop, and we need to cut that number to ten or fewer. We already house 80% of our enterprise data on one
large storage area network (SAN). However, our total CPU workload that is presently distributed across 57
servers is probably too large to fit onto ten machines. Our business's most important performance problem is
eliminating enough unnecessary CPU workload so that we can perform the server consolidation effort and
ditch about fifty of our servers.

The hardest part is usually gaining access to the right people in the business to get the information you need. You
might have to dig a little bit for your list. The following techniques can help:

Ask your boss where the performance risks are

Steer him away from answers that refer to technical components of the database. Force the conversation into
the domain of user language. Ask which user is giving him the most flak about system performance, and then
book a lunch with the user. The loudest user is not necessarily the one with the business's most critical
problem, but understanding that user's problems are probably a good start.

Take a user to lunch

Buy him a sandwich, and ask down-to-earth questions like, "If I could make something you use faster today,
what would you want it to be?"

Find a sales forecast for your business

Consider which application processes are going to be the most important ones to facilitate your company's
planned sales growth. Are those processes running as efficiently as they can?

If you get stuck in your conversations with people with whom you're trying to identify user actions that are important
to the business, ask them which actions fit into these categories:

� Actions that are business critical

� Actions that run a long time

� Actions that are run extremely often

� Actions that consume a lot of capacity of a resource you're trying to conserve

In addition to identifying which user actions require optimization, you need to identify the context in which those
actions are important. For example:

Page 2 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

� Is the action always slow?

� Is it slow only at a particular time of day (week, month, or year)?

� Is it slow only when it runs at the same time as some other program(s)?

� Is it slow only when the number of connected users exceeds some threshold?

� Is it slow only after some other program runs (upload, delete, etc.)?

Without context, you run the risk that you'll collect performance diagnostic data for the "problem" action and then
find after all your effort that there's apparently nothing wrong with it. You have to identify how to find the user action
when it is performing at its worst. Otherwise, you're not going to be able to see the problem. This concept is so
important that I'll say it again:

You have to identify how to find the user action when it is performing at its worst.

In this step, it is usually important to select more than one user action, especially in situations where many users
perceive many different performance problems. This is true even in situations where the number-one system
performance problem has a priority that clearly exceeds everything else on the system. The reasons for this advice
come from the experience of using the method many times:

� Because cost is a factor in net benefit, the business net benefit of improving, for example, user action #3 may
actually exceed the business net benefit of improving user action #1.

� Producing significant improvement quickly in any of a system's top five most important performance
problems can create a significant political advantage, including factors like project team morale and project
sponsor confidence.

� You might not know how to improve performance for user action #1. But fixing, for example, user action #3
may eliminate so much unnecessary workload that #1 becomes a non-issue.

� You can't tell which performance improvement action will produce the greatest net benefit to the business
until you can see a high-level cost-benefit analysis for the user actions in your top-five bucket.

2.2.3 Prioritizing the User Actions

Once you have constructed the list of candidate user actions, you need to rank the importance of their improvement to
the business. Everything you do later will require that you have chosen the most important actions to optimize first.
Business prioritization is vital for several reasons, including:

The most important actions will get fixed the soonest

This is the most important reason. Quite simply, if you don't optimize the most important business processes
first, then you're not optimizing.

Trade-off decisions will always favor more important user actions

On occasion, you may find that an optimization for one user action inflicts a performance penalty upon
another. This happens frequently when the optimization strategy you choose is to increase the capacity of
some component. However, because I hope to convince you to increase capacity only when necessary (that is,
rarely), such trade-offs should be rare.

Page 3 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-2-SECT-2

Less important user actions enjoy collateral benefits

The term collateral damage has been introduced into our language by discussions of accidents that occur
during wartime. The opposite of collateral damage is collateral benefit—a benefit yielded serendipitously by
attending to something else. Collateral performance benefits occur frequently on computer systems in which
we eliminate huge amounts of unnecessary work.

It's easy to over-analyze at this stage, but there's actually no need to spend much time here. All you need are rough
categories. I recommend grouping your user actions into prioritized buckets of no fewer than five. This way, you
won't be tempted to obsess over the precise ranking of actions that are close in importance. For example, if you have
ten important problem user actions, then create no more than two groups of five. If you have more than ten problem
actions (I've visited sites whose lists numbered in excess of fifty), then I suggest partitioning your list into three parts:

1. The five most important user actions (your first bucket).

2. The five next most important user actions (your second bucket).

3. The remainder of the important user actions you've listed (the union of your third and subsequent buckets)

Be especially wary of executing any prioritization task with the participation of large groups. Every user, of course,
will try to convince you that his actions are the very most supremely important actions on the entire system. And of
course, every action on the system cannot take top priority. Most of the time that you might spend negotiating whether
a user action belongs in one group or another could be invested more wisely in other steps of the method. If you find
that the whole prioritization task is consuming more than just a few minutes, then step back and just make some
sensible decisions. Assure the users whose actions don't fall into the top priority class that they haven't lost anything;
you'll attend to their problems too.

2.2.4 Determining Who Will Execute Each Action and When

The final step in the construction of a good spec for your performance improvement project is the specification of
how you'll be able to find each targeted action when it next runs in its targeted context. This information will allow
you to find the programs implementing those actions so that you can measure their performance.

Often, the success of a diagnostic data collection effort will be determined by your ability to establish simple human
contact with a person who will execute the slow action and answer the following simple questions:

� When is the next time that this person expects for the action to exhibit the performance problem?

� How can you watch?

The answers to these questions unambiguously define the parameters you'll use for your diagnostic data collection
process, which I describe in Chapter 3.

If you have a tool that constantly monitors the appropriate performance statistics for every individual user action on
your system, then predicting who will run a problem program and when it will happen becomes unnecessary. The
luxury of having such data for every user action on your system will allow you to respond to a complaint about an
action in the recent past instead of having to predict their occurrences in the imminent future. Such tools are
expensive, but they do exist.

If you do not own such a tool, then you'll have to be more selective in which diagnostic data you'll want to collect,
and the step described in this section will be essential. For you, I hope that Chapter 6 and Chapter 8 will provide
significant value.

Page 4 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Page 5 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 2. Targeting the Right User Actions

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-2-SECT-3

2.3 Specification Over-Constraint

I've discussed the reliability problems introduced by specifications that are too vague. Equally devastating is the
specification that is too precise. Many specifications that go into too much detail actually conflict with the
optimization goal. A specification that requires some specific program performance improvement and a 10-point
improvement in the database buffer cache hit ratio might actually be impossible to achieve. It is entirely possible that
improving the performance of a specified program might result in a dramatically lower system-wide cache hit ratio.
(See [Millsap (2001b)] for an example.)

Another fun example occurred several years ago when I was an Oracle Corporation employee. A performance
specification required that, on a particular client-server application form, navigation from one field to the next must
occur within 0.5 seconds. The specification further required for the client system to be in Singapore and for the server
system to be in Chicago. Furthermore, the specification required that we could not modify the prepackaged
application, which made an average of six synchronous database calls across the wide-area network (WAN) per field.

The objective as stated in the specification was unachievable, because the specification is over-constrained; it in fact
conflicts with the physical laws of our universe. There is no way that six round-trip network transmissions can occur
between Singapore and Chicago within the span of half a second. Even if we could eliminate all components of
response time except for the theoretically smallest amount of time required for the data transmission at its fastest
theoretically possible rate (that is, if we could ignore the time consumed by cable, hubs, routers, the database, and so
on), executing six round-trip communications per field will require at least 0.6 seconds per field.

Proof: Assume that all practical influences other than the speed of light have no effect upon
performance of field-to-field navigation. The speed of light in a vacuum is approximately 299,792,458
meters per second. The distance along the Earth's surface from Singapore to Chicago is approximately
15,000,000 meters. Therefore, the distance traversed by six round-trips for each field is 2 X 6 X
15,000,000 meters, or approximately 180,000,000 meters per field. Obeying the relationship d = rt, we

find that t = d/r 0.6 seconds per field. Reintroducing all of the practical influences upon
performance that we have ignored up to now will only degrade performance further. Therefore, the
requirement specification cannot be met. QED.

There is no way to meet this specification without relaxing at least one of its constraints. The most important
constraint to eliminate first was the requirement that each field must execute an average of six round-trips between the
client and the database server. The most important task of the existing performance improvement project was to show
the proof of why any project with the given specification was doomed to failure. Until this proof became known,
people on the project had continued to waste time and money in pursuit of an unattainable goal.

Good projects don't come from bad project specifications. Whether the problem is sloppy targeting or a specification
that is utterly unattainable, you cannot afford to base your performance improvement project upon a faulty
specification.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part I: Method

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-3

Chapter 3. Targeting the Right Diagnostic Data

Once you have correctly targeted the user actions for which the business most needs performance improvement, it is
data collection time. Diagnostic data collection is the project phase in which the typical performance analyst really
begins to feel a sense of progress. There are very few arguments in Oracle literature today about how one should go
about collecting performance diagnostic data. However, there should be. The way that you collect your diagnostic
data has a tremendous influence over a project's potential for success. In fact, unless you are exceptionally lucky, a
performance improvement project cannot proceed beyond a botched data collection.

I hope that this chapter will surprise you. It describes a couple of very important flaws in the standard data collection
procedures that are deeply institutionalized in the Oracle culture. In the hundreds of flawed Oracle performance
improvement projects that my colleagues and I have helped repair, a contributing factor to failure in nearly every
project was one or more errors in data collection. Unfortunately, virtually every document written about Oracle
performance prior to the year 2000 leads its reader to make these errors. I believe that the commonsense examples
described in this chapter will forever change your attitude toward diagnostic data collection.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 3. Targeting the Right Diagnostic Data

3.1 Expectations About Data Collection

The whole point of data collection in a performance improvement project using Method R is to collect response time
data for a correctly targeted user action. No more, no less. Unfortunately, many application designers have
complicated the data collection job significantly by providing insufficient instrumentation in their applications.

The data collection lessons you learn in this chapter will make data collection seem more difficult than you had
probably expected. The benefit of doing it right is that you will reduce your overall project costs and durations by
eliminating expensive and frustrating trial-and-error analysis/response iterations.

A Method R performance improvement project proceeds much differently than a project that uses the conventional
trial-and-error approach introduced as Method C in Chapter 1. Figure 3-1 illustrates the difference. A project
practitioner typically begins to feel like he is making real progress when the targeting and data collection phases are
complete and he enters the analysis/response phase of a performance improvement project. The Method C practitioner
typically reaches this milestone (marked t1 in Figure 3-1) before the Method R practitioner working on the same

problem would (marked t2). If you don't expect this, it can become a political sensitivity in a Method R project. The

time between t1 and t2 is when your risk of losing commitment to the new method is at its greatest.

Figure 3-1. The targeting and diagnostic data collection phases of Method R consume more time than in
conventional methods, but total project duration is typically much shorter

Many companies, especially Oracle Corporation, are improving the response time
instrumentation in newer application releases.

Page 1 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

Finishing the data collection phase quickly is not the goal of a performance improvement project. The correct goal is
to optimize the system with the smallest possible investment of resources. Method R is optimized for this goal. In
fact, my colleagues and I created Method R specifically to help our customers fix performance improvement projects
that had dragged on for weeks or even months without meaningful progress. In the overwhelming majority of Method
R projects we've led, we've been able to demonstrate how to achieve the optimization goal within one hour of
obtaining correctly scoped diagnostic data. Once you have collected the right performance diagnostic data, Method R
will require only a single analysis/response phase before you'll make progress against your targeted user action.

Method C practitioners spend most of their time in trial-and-error mode trying to determine the cause-effect
relationship between the hundreds of possible problem causes and the business symptom that is most in need of
improvement. A huge inefficiency of Method C is the need to perform, on average, several iterations of analysis and
response activities before you'll stumble upon a symptom's root cause. Each iteration of analysis and response tends to
consume more time than the prior one, because analysts usually try the easiest responses they can think of first, saving
the more time-consuming and expensive tuning activities for later in the project after the cheaper ideas are discarded.

The final blow to Method C is that there's really no quantitative way to determine when you're "finished tuning." In
many projects, Method C users never positively identify an actual contributory cause of a performance problem. Even
in "successful" projects, practitioners spend weeks, months, or even years without really knowing whether a targeted
performance problem has been truly perfected (optimized) or merely partially improved (tuned). The problem of not
knowing whether a user action could be further tuned leads to a condition that Gaja Vaidyanatha and Kirti Deshpande
cleverly call Compulsive Tuning Disorder, or CTD [Vaidyanatha and Deshpande (2001) 8]. I joke that CTD is a
debilitating condition caused by hope. More specifically, CTD is caused by an absence of complete information that
would allow you to prove conclusively whether the performance of a given user action has any room for
improvement. Method R fills this information gap, eliminating the possibility of CTD.

The first time you use Method R, collecting the diagnostic data will probably be the most difficult phase of your
project. For some applications, diagnostic data collection is a cake walk. For other applications, proper diagnostic data
collection can legitimately become quite a difficult challenge. Chapter 6 describes which kinds of applications are
easy and which are hard, and it illustrates some of the techniques that my colleagues and I have used to overcome
various challenges. The good news is that once you've figured out how to collect good diagnostic data for a targeted
user action in your application, the process will be much easier and less time-consuming on your next performance
improvement project. Method C, on the other hand, will always suffer from the problem of multiple analysis/response
iterations, regardless of where you are on the experience curve.

I believe that in the future, most application software vendors will make it very easy for users and analysts alike to
collect precisely the diagnostic data that Method R requires. Newer releases of Oracle's E-Business Suite are
simplifying the diagnostic data collection process, and everything I hear indicates that the Oracle release 10 kernel
and application server software are headed in the same direction. If the dominance of methods analogous to Method R
in other industries is any indication, then success in simplifying diagnostic data collection should practically
universalize the adoption of Method R for Oracle performance improvement projects.

Different Methods for Different Performance Problems?

Could it be that conventional methods are more effective for "simple" performance tuning problems, and
that Method R is more effective for "complex" ones? The problem with that question is this: How do you
know whether a performance tuning problem is "simple" or "complex" without engaging in some kind of
diagnostic data collection?

One approach that we considered during the construction of Method R was to collect very easy-to-obtain
diagnostic data to use in deciding whether the more difficult-to-obtain diagnostic data were even
necessary to collect. We found this approach to be sub-optimal. The problem with it is that there's
virtually no situation in which you can be certain about cause-effect relationships without the correct
diagnostic data (and of course, sometimes the correct diagnostic data are difficult to obtain). The doubt
and ambiguity that are admitted into a project by the analysis of easy-to-obtain diagnostic data rapidly
deteriorate the efficiency of a performance improvement project. The thought-blocking fixations that I've
seen caused by bad diagnostic data at many projects remind me of a wonderful quotation attributed to
Cardinal Thomas Wolsey (1471-1530): "Be very, very careful what you put into that head, because you
will never, ever get it out."

Page 2 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-3-SECT-1

A dominant goal during the construction of Method R was that it must be deterministic. Determinism is a
key attribute that determines how teachable (or automate-able) a method can be. We wanted to ensure
that any two people executing Method R upon a given performance problem would perform the same
sequence of tasks, without having to appeal to experience, intuition, or luck to determine which step to
take next. Our method achieves this by creating a single point of entry, and a well-defined sequence of if-
then-else instructions at every decision point thereafter.

Page 3 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 3. Targeting the Right Diagnostic Data

3.2 Data Scope

Good Oracle performance data collection requires good decision-making in two dimensions. You must collect data
for the right time scope and the right action scope. Let's begin by drawing a user action's response time consumption
as a sequence of chunks of time spent consuming various resources. Figure 3-2 shows the result. To keep it simple,
our imaginary system consists of only three types of resource, called C, D, and S. Imagine that these symbols stand
for CPU, disk, and serialization (such as the one-at-a-time access that the Oracle kernel imposes for locks, latches, and
certain memory buffer operations). In Figure 3-2, the time dimension extends in the horizontal direction.

Figure 3-2. The consumption of three types of resource over the duration of a user action

We can denote a system that is executing several user actions at the same time by stacking such drawings vertically,
as shown in Figure 3-3. In this drawing, the action dimension extends in the vertical direction.

Figure 3-3. By adding a vertical dimension, this drawing depicts a system containing seven concurrent actions,
each consuming three different types of resource through time

The following sections use this graphical notation to illustrate why the data collection methods that many Oracle
experts have been teaching since the 1980s are actually what have been killing performance improvement projects all
over the world.

3.2.1 Scoping Errors

In the system shown in Figure 3-3, imagine that the targeting process described in Chapter 2 has revealed the
following: the most important performance problem for the business is that a user named Wallace endures an
unacceptably long response time between times t1 and t2, as shown in Figure 3-4.

Figure 3-4. This system's most important user, Wallace, experiences unacceptable performance in the time
interval [t 1, t2]

Page 1 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

From the picture in Figure 3-4, it is easy to see that during the problem time interval, Wallace's response time was
consumed predominantly by S and secondarily by C, as shown in Table 3-1. Of course, repairing Wallace's
performance problem will require a reduction in time for Wallace's action spent consuming either S, or C, or both.
Amdahl's Law indicates that any percentage reduction in consumption of S will have 1.5 times the response time
impact that an equivalent percentage reduction in consumption of C will have, because the response time contribution
of S is 1.5 times the size of the response time contribution of C.

Perhaps the most common data collection error is to collect data that are aggregated in both dimensions. Figure 3-5
shows what this mistake looks like. The heavy, dark line around all the blocks in the entire figure indicate that data
were aggregated for all processes (not just Wallace's), and for the whole time interval [t0, t3] (not just [t1, t2]).

Counting the time units attributable system-wide during the [t0, t3] interval produces the resource profile shown in

Table 3-2. As you can see, Wallace's performance problem—which we know to have been too much time spent doing
S—has been thoroughly buried by all of the irrelevant data that we collected. The result of the botched data collection
will be a longer and probably less fruitful performance improvement project than we want.

Figure 3-5. Collecting data that are improperly scoped on both the time and action dimensions will completely
conceal the nature of Wallace's problem in the time interval [t 1, t2]

In the following discussions, I shall use the mathematical notation for a closed interval.
The notation [a, b] represents the set of values between a and b, inclusive:

[a, b] = {all x values for which a x b}

Table 3-1. Resource profile for Wallace's action for the time interval [t 1, t2]

Resource Elapsed time Percentage of total time

S 3 60.0%

C 2 40.0%

Total 5 100.0%

Page 2 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

From the data shown in Table 3-2, you simply cannot see that S is Wallace's principal problem root cause. It would
actually be irresponsible to assume that S might be the root cause of Wallace's problem.

Unfortunately, the deeply flawed data collection method illustrated here is the default behavior of Statspack, the
utlbstat.sql and utlestat.sql script pair, and virtually every other Oracle performance tool created between 1980 and
2000. Of the most deeply frustrating performance improvement projects with which I've ever assisted, this type of
data collection error is far and away the most common root cause of their failure.

The remedy to the data collection problem must be executed on both dimensions. Repairing the collection error in
only one dimension is not enough. Observe, for example, the result of collecting the data shown in Figure 3-6. Here,
the time scoping is done correctly, but the action scope is still too broad. The accompanying resource profile is shown
in Table 3-3. Again, remember that you know the root cause of Wallace's performance problem: it is a combination of
S and C. But the data collected system-wide provides apparent "evidence" quite to the contrary, even though the data
were collected for the correct time interval.

Figure 3-6. Collecting data that are scoped improperly on the action dimension also conceals the nature of
Wallace's performance problem, even though the data were collected for the correct time scope

Finally, examine the result of collecting data for the correct action scope but the wrong time scope, as shown in
Figure 3-7. Table 3-4 shows the resource profile. Once again, presented with these data, even a competent
performance analyst will botch the problem diagnosis job. Wallace's problem is S and C, but you certainly wouldn't
figure it out by looking at Table 3-4.

Table 3-2. Resource profile for the entire system for the time interval [t0, t3]

Resource Elapsed time Percentage of total time

D 66 47.1%

C 58 41.4%

S 16 11.4%

Total 140 100.0%

Table 3-3. Resource profile for the entire system for the time interval [t1, t2]

Resource Elapsed time Percentage of total time

D 23 65.7%

C 9 25.7%

S 3 8.6%

Total 35 100.0%

Page 3 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Figure 3-7. Collecting data that are scoped improperly on the time dimension also conceals the nature of
Wallace's performance problem, even though the data were collected for the correct action scope

From this sequence of simple examples, it is easy to see why proper diagnostic data collection is so vital to a
performance improvement project. The examples also clearly reveal the identity of the two dimensions along which
you can assess whether or not a given diagnostic data collection can be deemed proper:

Reliable problem diagnosis cannot proceed unless the data collection phase produces response time
data for exactly the right time scope and exactly the right action scope.

3.2.2 Long-Running User Actions

When you have a really long-running user action, do you need to collect performance diagnostic data for the whole
thing? Perhaps you have an action that ran in ten minutes last week, but today it has already run for over four hours,
and you're wondering whether you should kill it. Do you have to restart the job in order to collect diagnostic data for
it? Sometimes, I hear about batch jobs that run for several days before their users give up and terminate the jobs
instead of letting them finish.[1] Do you really need to collect performance diagnostic data for the whole job?

[1] In some of these cases, I've been able to prove that if the job were left to run to completion, it would not be able to complete in our
lifetimes.

The answer is no. Of course, collecting performance diagnostic data for some subset of an action's performance
problem duration introduces a type of time-scoping error, but it is actually useful to collect time-subset diagnostic
data in some circumstances. For example:

� If a user action is supposed to run in n minutes, then collecting data for just n + m minutes will reveal at least
m minutes of response time that shouldn't exist. For example, if a job is supposed to run in 10 minutes, then 25
minutes' worth of diagnostic data will reveal at least 15 minutes of workload that shouldn't exist.

� If a user action consists of a long sequence of repetitive tasks, then performance diagnostic data collected for a
small number of the tasks will reveal the resources consumed by the whole action, as long as the tasks are
homogeneous.

Table 3-4. Resource profile for Wallace's action for the time interval [t 0, t3]

Resource Elapsed time Percentage of total time

D 8 40.0%

C 8 40.0%

S 4 20.0%

Total 20 100.0%

Page 4 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-3-SECT-2

In Chapter 6, I discuss some collection errors that might occur if your data collection process begins in the midst of a
database action. But in many cases, collecting time-subset diagnostic data can help you along your way.

3.2.3 "Too Much Data" Is Really Not Enough Data

It is tempting to say that the scoping problems in Tables Table 3-2 through Table 3-4 were the result of collecting "too
much data." However, the problem with these three resource profiles was not necessarily in what data were collected,
it is more an issue of how the data were aggregated. Look again at Figure 3-5. There is plenty of information here to
produce a correctly scoped resource profile. The problem with Table 3-2 is in how the data from Figure 3-5 were
aggregated. The same can be said for Figures Figure 3-6 and Figure 3-7 and their resource profiles. The problem is
not that the figures contain too much data, it's that their corresponding resource profiles are aggregated incorrectly.

Poor aggregation is an especially big problem for projects that use SQL queries of Oracle V$ fixed views as their
performance diagnostic data sources. Oracle V$ views by their nature provide data that are either aggregated for an
entire instance since instance startup, or for an entire session since connection. For example, using V$SYSSTAT or
V$SYSTEM_EVENT is guaranteed to produce the action scoping errors depicted in Tables Table 3-2 and Table 3-3.
Even meticulous use of V$SESSTAT and V$SESSION_EVENT makes you prone to the type of time scoping error
depicted in Table 3-4 (as you can see by experimenting with my vprof program described in Chapter 8).

When used with careful attention to time scope, Oracle's V$SESSTAT and V$SESSION_EVENT views provide a high-
level perspective of why a user action is taking so long. However, for the next level of your diagnosis, you'll need to
know details that V$SESSTAT and V$SESSION_EVENT can't provide. For example, what if your preliminary analysis
indicates that your targeted user action is spending most of its time waiting for the event called latch free? Then you'll
wish you had collected data from V$LATCH (and perhaps V$LATCH_CHILDREN) for the same time interval. But even if
you had, you'll notice that neither fixed view contains a session ID attribute, so collecting properly action-scoped data
about latches on a busy system will be impossible.

The problem of acquiring secondary detail data from V$ views is an extremely serious one. It's by no means just a
problem with V$LATCH. What if the dominant consumer of response time had been CPU service? Then you need
properly time- and action-scoped data at least from V$SQL. What if the dominant consumer had been waits for db file
scattered read? Then you need properly time- and action-scoped data at least from V$FILESTAT. What if the problem
had been waits for buffer busy waits? Then you need V$WAITSTAT. In Oracle9i there are roughly 300 events that beg for
details from any of dozens of V$ fixed views. Even if you could query from all these V$ views at exactly the right
times to produce accurately time-scoped data, you'd still be left with aggregations whose values fall short of what you
could acquire through other means.

Happily, there are at least three ways to acquire the drill-down data you need. The first doesn't work very well. The
second is expensive, but you might already have the capability. The third is available to you for the price of the book
that you are holding. The following section explains.

Page 5 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 3. Targeting the Right Diagnostic Data

3.3 Oracle Diagnostic Data Sources

There are at least three distinct ways to access Oracle's operational timing data:

� Querying Oracle fixed views using SQL (fixed views are the views whose names begin with the prefix V$,
GV$, or X$).

� Polling Oracle shared memory segments directly to obtain the same V$ data (that is, accessing the same V$
data without using SQL).

� Activating Oracle's extended SQL trace facility to emit the complete historical timing activity of an Oracle
session to a trace file.

Although V$ data and extended SQL trace data look like quite different things, it's all the same data, just presented
through different user interfaces. In Chapter 7, I describe where the base information comes from.

After devoting three years full-time to studying Method R and its data collection requirements, my personal opinion
on the merits of these three approaches is as follows:

Querying V$ data through SQL

Using SQL to acquire data from V$ fixed views is an excellent way to compile information about resource
consumption (that is, to acquire information about how many times various resources have been visited). See
Tom Kyte's excellent example at http://asktom.oracle.com/~tkyte/runstats.html for more information. V$ data
are especially valuable during application development. Using SQL to acquire timing data through the V$ fixed
views, it's easy to get started experimenting with Oracle's operational timing data. But for several reasons
listed in Chapter 8, the timing data you will obtain from this data source are unreliable for several problem
types. Using SQL to acquire timing data from V$ fixed views provides much less capability than the other two
approaches.

Polling V$ data directly from Oracle shared memory

If you already own a tool that allows you to properly manipulate the time scope and action scope of your
diagnostic data, then high-frequency polling directly from shared memory is probably an excellent approach
for you. High-frequency polling gives you diagnostic data that reliably help you solve many types of
performance problem. However, attaching to shared memory and then storing gigantic masses of data requires
either a lot of study and hard work, or a financial investment in a tool to do it for you. Such tools are
expensive.

One fixed view called X$TRACE does provide a means to access extended SQL trace data
through SQL. However, the X$TRACE feature is presently undocumented, unsupported,
and unstable. If Oracle Corporation fortifies the X$TRACE facility in the future, it may
render obsolete my pessimistic comments about drill-down with fixed view data. But as of
Oracle release 9.2, the feature is not ready for production use.

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-3-SECT-3

Activating the extended SQL trace facility

The extended SQL trace facility also offers outstanding diagnostic reliability, but without the research or
investment pain that high-frequency polling requires. The principal disadvantage of using extended SQL trace
is that you'll be able to collect diagnostic data only for those user actions that you can expect beforehand to
exhibit suboptimal performance behavior. This can require some patience when a performance problem occurs
only intermittently. With polling, you'll be able to construct properly scoped diagnostic data for any historical
user action that you might like to analyze, but only if you have invested into enough un-aggregated diagnostic
data storage. Extended SQL trace data provides an excellent low-cost substitute for high-frequency polling.

In Table 3-5, I've tried to translate my opinion into a numerical format for your convenience.

I believe that extended SQL trace data offers the best performance optimization value of the three diagnostic data
sources identified in this chapter. In the past three years, my colleagues and I at www.hotsos.com have helped to
diagnose and repair production performance problems in well over 1,000 cases using only extended SQL trace data.
Our field testing has shown that, when used properly, the extended SQL trace feature is a stunningly reliable
performance diagnostic tool.

This technique of creating the illusion that a man's opinion can be manipulated
arithmetically is something I picked up from reading Car & Driver magazine.

Table 3-5. My opinion on the relative merits of the three Oracle operational timing data sources. Scores
range from 1 to 10, with higher scores representing better performance in the named attribute

 Diagnostic data source

Attribute V$ fixed views Oracle shared memory Extended SQL trace data

Ease of getting results now 9 1 8

Ease of storing the retrieved data 7 1 10

Ease of parsing the retrieved data 8 1 7

Minimal invasiveness upon Oracle kernel 2 10 7

Minimal invasiveness upon other resources 8 4 7

Capacity for historical drill-down analysis 1 8 7

Cost to develop tools to assist in analysis 9 1 6

Diagnostic reliability 3 9 9

Total 45 35 61

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 3. Targeting the Right Diagnostic Data

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-3-SECT-4

3.4 For More Information

Chapter 5 and Chapter 6 contain the information you will need to put extended SQL trace data to use, as soon as
you're ready for it. Chapter 8 provides some guidance for you in the domain of Oracle's V$ data sources. I do not
discuss in this text how to obtain performance information directly from an Oracle SGA. Very few of the people who
have figured out how to map the Oracle SGA are willing to talk about it publicly. Kyle Hailey is one professional who
has figured it out and who has been willing to describe the process [Hailey (2002)]. As a technician, I find the subject
of direct Oracle SGA memory access to be irresistible. However, as a practitioner and a student of optimization
economics, I have found Oracle extended SQL trace data absolutely unbeatable.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

Book: Optimizing Oracle Performance
Section: Part I: Method

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-4

Chapter 4. Targeting the Right Improvement Activity

When you have collected properly scoped diagnostic data for some targeted user actions, it's time to figure out how to
repair the problem:

Execute the candidate optimization activity that will have the greatest net payoff to the business. If
even the best net-payoff activity produces insufficient net payoff, then suspend your performance
improvement activities until something changes.

Performing this task well requires thinking in two distinctly different fields. First, there's the job that everyone knows
about: the technical job of figuring out which changes might cause performance improvement. The analysis that you
might not have expected is the job of predicting the financial impact of each change. This is the job that many
performance analysts don't do very well (most analysts don't do it very well because they don't try to do it at all). It is
the job that is almost impossible to perform with conventional "Oracle tuning" methods. But by not predicting the
financial impact of a change before you make it, you lose the ability to make well-informed performance
improvement decisions that suit the priorities of your business.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 4. Targeting the Right Improvement Activity

4.1 A New Standard of Customer Care

In many ways, Oracle performance analysis is still in its infancy. The age of response time-based optimization
methods—ushered in by the likes of Juan Loaiza, Roderick Mañalac, Anjo Kolk, and Shari Yamaguchi—is certainly a
big technical leap forward. But technical advances represent only a part of our field's necessary growth path. The
standard of quality with which we treat our customers (our users, our managers, our consulting clients...) is another
tremendous growth opportunity for us.

The Stanford University Human Subjects Manual illustrates how I believe we ought to treat our customers. The
following text is an excerpt from the chapter entitled "Informed Consent" [Stanford (2001)]:

The voluntary consent of the human subject is absolutely essential. This means that the person
involved should:

� Have the legal capacity to give consent;

� Be so situated as to be able to exercise free power of choice, without the intervention of any
element of force, fraud, deceit, duress, over-reaching, or other form of constraint or coercion;
and

� Have sufficient knowledge and comprehension of the subject matter and the elements involved
as to enable him or her to make an informed and enlightened decision.

This latter element requires that all of the following be made known to the subject:

i. The nature of the experiment;

ii. The duration of the experiment;

iii. The purpose of the experiment;

iv. The method and means by which the experiment is to be conducted;

v. All inconveniences and hazards reasonably to be expected;

vi. The effects upon the subject's health or person which may possibly come from his or her
participation in the experiment.

I find the idea of informed consent extremely relevant to our profession. Thankfully, few Oracle analysts live under
the kinds of literally life-and-death pressures that medical practitioners deal with every day. But, regularly, many of us
are enlisted to execute very technical tasks that few non-specialists understand, in situations that involve very high
stakes for the customers who need our help. The doctrine of informed consent is a sort of "bill of rights" that protects
any customer who lives on the short end of the teeter-totter in a technology balance of power.

But living up to the standard of informed consent is virtually impossible for practitioners who use the conventional
Method C Oracle tuning approach. The Method C technology simply doesn't provide you with the information you
need to predict how a project—or even a small piece of a project—is going to turn out. You can't tell your customers
something you don't know. One of the most important benefits of Method R is that it puts within reach the technical
tools that enable us to enact this informed consent standard of customer care within our profession.

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-4-SECT-1

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 4. Targeting the Right Improvement Activity

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-4-SECT-2

4.2 How to Find the Economically Optimal Performance Improvement Activity

By now, you've probably noticed that a central theme of Method R is careful targeting. How you respond to your
diagnostic data fits the theme. Your response consists of three targeting steps:

1. First, the analyst targets the user actions for which performance improvement provides the best potential
economic value to the business (Chapter 2).

2. Next, the analyst targets the correct time scope and action scope for diagnostic data collection (Chapter 3).

3. Finally, the analyst targets for implementation the performance improvement activity with the best expected
net payoff (Chapter 4).

As I described in Chapter 1, the data format that best facilitates this third act of targeting is the resource profile.
However, a resource profile is only part of the information that you'll need. After you learn from your resource profile
where a user action's time went, your next step is to mine the diagnostic data to determine why a targeted component
of response time took so long. Fortunately, if you have collected well-scoped extended SQL trace data, then
everything you'll need is already in your possession. If you have not collected well-scoped extended SQL trace data,
then you probably shouldn't have escaped the bounds of Chapter 3 just yet.

Once you have collected properly time- and action-scoped diagnostic data for each of your few (one to five) targeted
user actions, the following algorithm combines the technical and financial analysis elements required to reveal the
optimal action for your business:

1. For each targeted user action:

a. Assemble your diagnostic data into a format that helps you attribute root causes to elements of the
action's response time consumption.

b. Estimate the net payoff of the best few options for performance improvement. Add the option and its
expected net payoff to the list of candidate performance improvement activities.

2. From the list of candidate performance improvement activities, determine which activities will provide the
best net payoff for the business.

When you've performed these steps, you've identified the performance activities that will most benefit your business.
The next thing you'll do is set this book down and go convert your performance improvement plan into reality.

Method R is a significant departure from conventional "tuning" approaches. Method R is
not about chasing down a list of ratios or even wait events that look suspicious. It's about
aligning the priorities of performance improvement with business need. Your business
drives prioritization decisions in an optimized performance improvement project, not your
technology.

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 4. Targeting the Right Improvement Activity

4.3 Making Sense of Your Diagnostic Data

Part II contains all the information you will need to respond to properly scoped performance diagnostic data. As you'll
see, the Method R pathway through your diagnostic data is deterministic. Therefore, assembly of raw Oracle trace
data into something you can analyze conveniently is a task that can be automated. Some form of automation is
essential if your job includes analyzing several megabytes of raw trace data. At the time of this writing, I am aware of
three tools that Oracle Corporation provides to help:

tkprof

tkprof is a trace file formatter that takes raw Oracle trace data as input and emits a text file that shows
performance statistics aggregated by SQL statement. Different command-line options allow you to select the
order in which the SQL statements are shown. tkprof was designed for unit-level performance testing of SQL
applications, and it does an excellent job in that role. Oracle9i is the first release in which tkprof processes the
Oracle "wait event" data required by Method R. Prior versions of tkprof simply ignore the wait data. (Chapter
5 explains the significance of Oracle "wait events.") For more information about tkprof, see the Oracle
Performance Tuning Guide and Reference (http://technet.oracle.com) and MetaLink documents 41634.1,
29012.1, and 1012416.6.

trcsummary

trcsummary is a tool that Oracle Corporation advertises as "not available for general customer use." It uses
awk and nawk to parse an Oracle trace file and provide similar output to that produced by tkprof. It was
apparently designed to overcome some of the deficiencies of early tkprof releases. For more information about
trcsummary, see Oracle MetaLink document 62160.1.

Trace Analyzer

Trace Analyzer is a set of SQL*Plus scripts and PL/SQL code that reads a raw SQL trace file, loads its content
into a database, and then prints a detailed report. Trace Analyzer is capable of processing Oracle "wait event"
data. For more information about Trace Analyzer, see Oracle MetaLink document 224270.1.

Of these three options, Oracle's Trace Analyzer is the newest and most comprehensive, but it is also the most
cumbersome to use. It is very slow, and the prodigious quantity of un-prioritized output that it emits can require days
of analysis to decipher.

The trace file analyzer I use is a commercial product in which I meddled while Jeff Holt did all the real work, called
the Hotsos ProfilerTM. We built the Hotsos Profiler because no other tool on the market took us from data collected to
problem solved as fast as we needed. The Hotsos Profiler takes just a few seconds to convert a multi-megabyte
extended SQL trace file into an HTML document that reveals the root cause of virtually any performance problem
within two mouse clicks. With Hotsos Profiler output, I expect to understand the net payoffs of all my best
performance improvement options within one hour of acquiring a properly scoped trace file. You can read about the
Hotsos Profiler at http://www.hotsos.com.

Once you have assembled your diagnostic data into a format that you can analyze, your next job is to determine how
you might go about improving the performance of your targeted user action. Your work at this point becomes a brief
iterative process that looks something like this:

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-4-SECT-3

1. Use the resource profile to identify the components of response time that appears to offer the best net payoff
opportunity. Then find the diagnostic data elements that will illustrate why the components account for so
much response time.

2. Assess ideas that you believe will best reduce time spent in the response time component targeted in step 1. To
do this, you'll typically test a performance improvement idea on a testing system. The result of such a test
provides the data you need to forecast the net payoff of a project to implement an idea. Assess enough ideas to
convince yourself that you're not overlooking any high-payoff performance improvement opportunities.

I defer the technical details of how to execute these steps to Part III. The remainder of this chapter is devoted to the
task of forecasting the net payoff of a project.

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 4. Targeting the Right Improvement Activity

4.4 Forecasting Project Net Payoff

The point of a performance improvement project is economic optimization. When you undertake a performance
improvement project, you're implementing a willingness to make a time and materials investment in exchange for an
improved amount of economic value coming out of the system. Optimizing successfully requires that each of your
work steps be an informed action. That is, you should know the costs and benefits of every step you take before you
take it.

The rule that should guide your behavior is simple: before making any investment, you should understand the
expected net payoff of that investment. The net payoff of a project is the present value (PV) of the project's benefits
minus the present value of the project's costs. The concept of present value is conceptually simple:

A dollar today is worth more than a dollar tomorrow, because the dollar today can be invested to start
earning interest immediately. [Brealey and Myers (1988), 12]

The PV formula is the tool you need to "normalize" future cash flows into present-day dollars so that you can make an
apples-to-apples comparison of investments and payoffs that are expected to occur at different times in the future. To
forecast the net payoff of a proposed project, then, you'll need to execute the following steps:

1. Forecast the business benefits of the proposed activity and the timings of those benefits.

2. Forecast the business costs of the proposed activity and the timings of those costs.

3. Compute the PV of each cash flow component by using the formula:

where C is the future cash flow, and r is the rate of return that you demand for accepting delayed payment.
Microsoft Excel provides a built-in PV function to perform this calculation.

For example, if you expect a rate of return of r = 0.07 (this is the approximate average rate of return of the
U.S. stock market over the past 90 years), then the present value of a dollar received one year from now is
only about $0.934579. In other words, if you expect a 7% rate of return, receiving $1 in one year is of
equivalent value to receiving $0.934579 today. The reason is that you can invest $0.934579 today, and if you
receive 7% interest on that money, in one year it will be worth $1.

4. Compute the net payoff of the proposed activity by summing all the benefit PVs and subtracting all the cost
PVs.

Once you know the PV of each proposed activity, you (or your project's decision-maker) can make simple
comparisons of proposed activities based on their estimated financial values.

4.4.1 Forecasting Project Benefits

The resource profile vastly simplifies the task of forecasting the business benefit of a proposed performance
improvement activity. I remember painfully the days before Method R, when the only ways we had to forecast
business benefits were to extrapolate well beyond our mathematical rights to do so. For example, I can remember
when professional analysts used to forecast results like this:

Page 1 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

"I have reduced the number of extents in your sales order table from 3,482 to just 8. It is expected that
this improvement will increase across-the-board Order Entry performance by 30 percent."

"Increasing the buffer hit ratio from 95 to 99 percent can yield performance gains of over 400 percent."

I have books that say stuff like this. Did you ever wonder where a number like "30" or "400" comes from in
statements like these? Unless such a number comes from a properly scoped resource profile, then you can virtually be
assured that it came from a place where unsubstantiated estimates hide when they're not being drafted into service by
a consultant whose earnings capacity relies upon an ability to inspire customer hope.

I hope this book will help you both make better performance improvement decisions and insist upon better decisions
from the professionals who are supposed to be helping you.

4.4.1.1 Monetizing the benefits

There are two steps in forecasting the benefits of a proposed performance improvement action:

1. Estimate the amount of response time you can eliminate from a targeted user action. Part III describes how to
do this.

2. Estimate the cash value to the business of that response time improvement. Arithmetically, this calculation is
straightforward. It is the product of the following three quantities:

The number of seconds you can remove from a user action
multiplied by
The number of times the user action will be executed over the period during which the business
benefits are being forecast
multiplied by
The cash value of one second of response time to the business

Step 1 is simple in practice. As you'll learn in Part III, a resource profile generated on a production system provides all
the before timing statistics you need, and a resource profile generated on a test system helps you forecast your after
timing statistics. Step 2 is usually simple as well, until it comes time to estimate the cash value of one second of
response time to the business. Many businesses simply don't know this number. Some businesses do. For example,
your company may already know information like the following:

Improving the speed of the return materials authorization process from 5 days to 2 hours will be
necessary to prevent losing our largest retail customer. An annual sales impact of over $100,000,000
hangs in the balance.

Reducing the time it takes to invoice our customers from 4 days to 1 day will reduce our working
capital requirement by 325.000.

Improving the performance of the form through which our users pay invoices will improve accounting
staff morale, reduce staff turnover, and reduce overtime wages, resulting in annual cost savings of over
£60.000.

Increasing the number of orders processed on the system from the current state of 40 orders in a peak
hour to 100 orders per hour will increase annual sales revenue by over ¥100,000,000.

I always derive a kind of sinister enjoyment when I see benefit statements written with
phrases like, "It is expected that...." The use of passive voice in situations like this is a
grammatical tool that authors use when they want to make it possible later to disassociate
themselves from their own guesses.

Page 2 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

For businesses that don't have such concrete "dollar"-per-second value specifications, it is usually good enough to
express project value in terms of un-monetized response time savings over some reasonable period. A resulting net
payoff statement might look like this:

I expect Project A to be complete within two weeks at a cost of $10,000. I expect as a result, we will
reduce end-user response times by over 128 hours per week.

With the "dollar"-per-second value specification in hand, though, the net payoff statement makes decision-making a
little easier:

I expect Project A to be complete within two weeks at a cost of $10,000. I expect as a result, we will
reduce end-user response times by over 128 hours per week, which will save the company over
$70,000 in labor expenses per year.

Monetizing the expected benefits of a project is often an unnecessary academic exercise. This is especially likely in
projects in which the cost of the appropriate remedy action is low compared to the obvious business value of the
repair. For example, the following requirements range widely from very vague to very specific. However, each
provides a perfectly legitimate level of detail in its place:

I don't know how long this report should run. I just know that how long it's running now can't be right.
We'll appreciate anything you can do to help.

We can't live with the application unless you can reduce the response time for this transaction from
several minutes down to only a couple of seconds.

This transaction must respond in 1.0 seconds or less in 95% of executions.

This transaction must consume less than 13 milliseconds on an unloaded system.

I explain in Chapter 9 how and why you might formulate extremely detailed requirements like the final two shown
here with only the limited information available from an application unit test. In such detailed specifications, it will
usually be important for your project sponsor to assign a business value to the requirement. I've witnessed several
projects that survived only because during the course of the project, the project sponsor relaxed several of his original
specifications when he found out how much it was going to cost to actually meet them.

4.4.1.2 If you can't monetize the benefits

It's often not a problem if you can't reasonably approximate the "dollar"-per-second value of response time reductions.
If the remedy you propose is inexpensive to obtain, then your project sponsor will probably never require a cash
benefit justification. In this case, the only person who will really miss the data is you—you'll miss the opportunity to
quantify the financial impact of your good work. If the remedy you propose is very expensive, then an inability to
affix a reasonable value to your expected response time savings will result in one of three outcomes:

� Your project sponsor will estimate the financial benefit and make a well-informed financial decision about
your project direction.

� The project will be allowed to continue in spite of the lack of objective financial justification, which may or
may not be a mistake—you won't know until the project is done.

� The project will simply be called off on the grounds that "it will cost too much." The best way I know to
combat a project termination threat is to prove the financial benefit of the project net payoff. If the project
can't stand up to the scrutiny of financial justification, then termination is almost certainly the right answer.

The financial benefit estimation task is in place solely to provide the data that you or your project sponsor will need to
make financial decisions about your project. It's nothing more than that. Don't diminish your credibility by letting
unnecessarily detailed forecasting of business value bog down your project.

Page 3 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

4.4.2 Forecasting Project Cost

Forecasting a project's net payoff requires both a forecast of benefits and a forecast of costs. Forecasting costs is the
easier of the two tasks, because there's so much more infrastructure in place to help you do it. Lots of people are good
at estimating the level of investment required to try something. Consultants, for example, take courses in proposal
development that fine-tune their skills in estimating project costs. Consultants who can't estimate project costs with
reasonable accuracy go out of business (and typically then go to work for other consultants who can).

For you to produce reasonable project cost forecasts, you of course must understand the tasks that will be required to
implement a proposed performance improvement. I have provided a lot of information in Part III that I hope will
stimulate you to better understand many of those tasks and materials.

4.4.3 Forecasting Project Risk

Even the best projects usually miss their forecasts. It is virtually impossible to predict the precise benefit or cost of
any complicated activity. Therefore, the best forecasters integrate the concept of risk into their assessments. Before a
project has completed, its cost and benefit are random variables. A random variable is a concept that mathematicians
use to describe the result of a process that cannot be predicted exactly, but that is constrained in some understandable
way. Each variable has an expected value, but each has properties of variance that you need to understand going into
the project. Financial analysts use the word "risk" to refer to what statisticians measure as "variation" [Kachigan
(1986); Bodie, et al. (1989)].

It is possible to measure the risk of a project that has occurred in the past, if you have data from enough projects to
draw statistically valid conclusions. To consider how it is possible to measure project risk, imagine that thirty
different project teams were to embark upon thirty identical performance improvement projects. It is virtually

A Warning About Thinking in Percentage Units

The resource profile format makes thinking in percentages easy. If a performance improvement activity
will eliminate x percent of some duration that accounts for y percent of your total response time, then the
action will eliminate x X y percent of your total response time. For example, if you can eliminate 50% of
some duration that accounts for 80% of your total response time, then you'll reduce total response time
by 40% (0.5 X 0.8 = 0.4).

But beware any time you use percentages as decision-making tools. Percentages are always susceptible
to ratio fallacies. For example, which is better: to improve response time by 20% of A, or to improve
response time by 90% of B? The correct response to the question is that, without knowing the values of A
and B, you can't answer the question. If you answered either A or B, then you have become the victim of
a ratio fallacy.

What Is Your Project's "Cost Constraint"?

Many people, when asked "What is your project cost constraint?", are tempted to give a fixed numerical
answer like "ten thousand dollars." But a good financial officer would probably answer that the real
constraint depends upon the value of the improvement to the business and the rate of return on
investments that the business requires.

For example, imagine that the presumed budgetary limit is $10,000. Say that the return on investment
that the business requires is 35%, and imagine that you've identified a performance improvement that
will bring an incremental $1,000,000 of value this year to the business. Then if the business can truly
trust your $1,000,000 estimate of benefit value, it should be willing to invest up to $740,741 into your
project. The analysis boils down to whether the $740,741 that the business will have to procure from un-
budgeted sources can be expected to fetch a higher return in your project or elsewhere.

Page 4 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

inconceivable that all thirty projects would come in at the exact same cost and deliver the exact same benefit. If we
could perform such an experiment in real life, then with so many project teams participating, we would actually have
enough data at the conclusion of our experiment to determine a statistical pattern in the costs and benefits. If you were
to plot a histogram of, for example, project costs across all thirty executions of the project, you might end up with the
one shown in Figure 4-1.

Figure 4-1. Thirty executions of a project all came in at different costs

The costs depicted in Figure 4-1 exhibit a clear tendency to cluster around the value 15,000 (imagine that this figure
represents units of your local currency). If the cost numbers happened to be skewed rightward and distributed over a
wider range, like the ones shown in Figure 4-2, then, quite simply, the project's risk is greater: there's a greater chance
that the project will overrun its cost estimate.

Figure 4-2. The larger cost variance for this project indicates increased project risk

If you had the luxury of having project cost and benefit data from large numbers of projects that are exactly like the
one you're undertaking, then of course you'd be a lot better able to predict the true cost and benefit of your project.
But you probably don't have this kind of data unless you're a company that does the same type of project over and
over again. (Companies who execute the same type of project over and over again can get quite good at predicting
project costs and benefits.)

Several factors influence the risk of cost overruns and benefit shortfalls in a project. The dominant factor is
experience. Doing something that nobody has ever done before is understandably risk-intensive. But even executing a
simple project with a team that has never done it before can produce unpredictable results. Experience isn't the only
thing, though. One of my favorite lessons from athletics is this one [Pelz (2000)]:

Page 5 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-4-SECT-4

Practice makes permanent. Only perfect practice makes perfect.

This is a scientist's way of saying that just because someone has done something ten thousand times doesn't mean he
does it well.[1] A consistent track record of success in similar projects is a tremendous risk reduction factor.

[1] A related observation is this: meeting a given quality standard ensures only consistent quality, not necessarily high quality.

You can get as fancy at forecasting variances as you want. However, don't lose sight of the goal of your adventures in
risk forecasting. What you're really looking for is the ability to predict two things that your customer needs to know,
and that can come directly from the "informed consent" text cited earlier in this chapter:

v. All inconveniences and hazards reasonably to be expected

vi. The effects upon the subject's health or person which may possibly come from his or her participation in the
experiment

You'll never be able to predict the exact costs and benefits of every project action you recommend. But, by using the
techniques described in this book, you will be able to refine your predictive abilities very rapidly.

Page 6 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part II: Reference

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-5

Chapter 5. Interpreting Extended SQL Trace Data

To succeed, a performance analyst must understand the language in which a system communicates information about
its performance. Unfortunately, for over a decade, the domain of Oracle time statistics has been one of the most
misunderstood areas of the Oracle kernel. To understand the response time instrumentation that the Oracle kernel
provides, you must understand how the Oracle kernel interacts with its host operating system. It is this operating
system that allocates resources to the Oracle kernel process itself, and it is the operating system that actually supplies
the timing statistics that Oracle uses to describe its own performance.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 5. Interpreting Extended SQL Trace Data

5.1 Trace File Walk-Through

I believe that the best way to begin the study of Oracle operational data is with a tour of Oracle's extended SQL trace
output. SQL trace output is unsurpassed as an educational and diagnostic aid, because it presents a linear sequential
recorded history of what the Oracle kernel does in response to an application's demands upon the database.

The SQL trace feature has been a part of the Oracle kernel since Version 6, which should be older than any version of
Oracle that you are currently running. In 1992, with the release of the kernel Version 7.0.12, Oracle Corporation
significantly enhanced the value of SQL trace data by adding information about the durations of non-CPU-consuming
instructions that the Oracle kernel executes.

Let's begin our study with the "Hello, world" of Oracle response time data. Example 5-1 shows one of the simplest
SQL*Plus sessions you can run. The session activates the extended SQL trace mechanism for itself. It then queries the
string "Hello, world; today is sysdate" from the database and exits.

Example 5-1. Input for a SQL*Plus session that generates extended SQL trace data for a simple query

alter session set max_dump_file_size=unlimited;
alter session set timed_statistics=true;
alter session set events '10046 trace name context forever, level 12';
select 'Hello, world; today is '||sysdate from dual;
exit;

The trace file shown in Example 5-2 reveals the sequence of actions the Oracle kernel performed on behalf of this
session. If you've learned to view SQL trace data only through the lens of Oracle's tkprof, then you're in for a treat. By
upgrading your understanding of extended SQL trace data in the raw, you'll earn the ability to diagnose more classes
of performance problem than can be detected with tkprof alone. After becoming fluent with raw trace data, many
analysts are surprised by how many deficiencies they find in tkprof.

Example 5-2. Raw extended SQL trace data produced by a SQL*Plus session using Example 5-1 as input

/u01/oradata/admin/V901/udump/ora_9178.trc
Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production
With the Partitioning option
JServer Release 9.0.1.0.0 - Production
ORACLE_HOME = /u01/oradata/app/9.0.1
System name: Linux
Node name: research
Release: 2.4.4-4GB
Version: #1 Fri May 18 14:11:12 GMT 2001
Machine: i686
Instance name: V901
Redo thread mounted by this instance: 1
Oracle process number: 9
Unix process pid: 9178, image: oracle@research (TNS V1-V3)

*** SESSION ID:(7.6692) 2002-12-03 10:07:40.051
APPNAME mod='SQL*Plus' mh=3669949024 act='' ah=4029777240
=
PARSING IN CURSOR #1 len=69 dep=0 uid=5 oct=42 lid=5 tim=1038931660052098 hv=1509700594
ad='50d6d560'
alter session set events '10046 trace name context forever, level 12'
END OF STMT
EXEC #1:c=0,e=1,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=1038931660051673
WAIT #1: nam='SQL*Net message to client' ela= 5 p1=1650815232 p2=1 p3=0
WAIT #1: nam='SQL*Net message from client' ela= 1262 p1=1650815232 p2=1 p3=0
=
PARSING IN CURSOR #1 len=51 dep=0 uid=5 oct=3 lid=5 tim=1038931660054075 hv=1716247018

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-5-SECT-1

ad='50c551f8'
select 'Hello, world; today is '||sysdate from dual
END OF STMT
PARSE #1:c=0,e=214,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=1038931660054053
BINDS #1:
EXEC #1:c=0,e=124,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=1038931660054311
WAIT #1: nam='SQL*Net message to client' ela= 5 p1=1650815232 p2=1 p3=0
FETCH #1:c=0,e=177,p=0,cr=1,cu=2,mis=0,r=1,dep=0,og=4,tim=1038931660054596
WAIT #1: nam='SQL*Net message from client' ela= 499 p1=1650815232 p2=1 p3=0
FETCH #1:c=0,e=2,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0,tim=1038931660055374
WAIT #1: nam='SQL*Net message to client' ela= 4 p1=1650815232 p2=1 p3=0
WAIT #1: nam='SQL*Net message from client' ela= 1261 p1=1650815232 p2=1 p3=0
STAT #1 id=1 cnt=1 pid=0 pos=0 obj=221 op='TABLE ACCESS FULL DUAL '
XCTEND rlbk=0, rd_only=1

It's not difficult to step through a trace file this small by hand. At the end of this chapter, I'll describe each action in
overview, to give you a feel for what kind of data you'll find in the trace file. In the meantime, let's just hit the
highlights.

At the beginning of a trace file is a preamble, which reveals information about the trace file: its name, the release of
the Oracle kernel that generated it, and so on. Next is a line that identifies the session being traced (session 7, serial
number 6692 in our case), and the time the line was emitted. Notice that the kernel identifies every SQL statement
used by the session in a PARSING IN CURSOR section. This PARSING IN CURSOR section shows attributes of the SQL
text being used, including the SQL text itself.

The action lines in a trace file are lines beginning with the tokens PARSE, EXEC, and FETCH (and a few others) and the
WAIT lines. Each PARSE, EXEC, and FETCH line represents the execution of a single database call. The c and e statistics
report on how much total CPU time and total elapsed time, respectively, were consumed by the call. Other statistics
on a database call line reveal the number of Oracle blocks obtained via operating system read calls (p) or by two
modes of database buffer cache retrieval (cr for consistent-mode reads and cu for current-mode reads), the number of
misses on the library cache endured by the call (mis), and the number of rows returned by the call (r). The tim value at
the end of each database call line lets you know approximately what time it was when the database call completed.

The WAIT lines are an exciting "new" addition to Oracle trace files, since they have been available only since about
1992. These WAIT lines are part of what distinguish extended SQL trace data from plain old regular SQL trace data.
Each WAIT line reports on the duration of a specific sequence of instructions executed within the Oracle kernel
process. The ela statistic reports the response time of such a sequence of instructions. The nam attribute identifies the
call, and the p1, p2, and p3 values provide useful information about the call in a format that is unique to each different
nam value.

The STAT lines don't convey direct response time information until Release 9.2. However, even prior to 9.2, they're of
immense use in performance analysis, because they contain information about the execution plan that the Oracle
query optimizer chose for executing the cursor's SQL. Finally, the XCTEND line is emitted whenever the application
being traced issues a commit or a rollback instruction.

That's it. Everything you need to account accurately for a session's response time is in the trace file. One of the best
things about the data is that you can see exactly what a session did during the course of its execution. You don't have
to try to extrapolate details from an average, like assessing V$ data forces you to do. All the details are laid out in front
of you in chronological order,[1] and they're stored in an easy-to-parse ASCII format.

[1] There are a few inconsequential exceptions to strict chronological ordering, which you shall see shortly.

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 5. Interpreting Extended SQL Trace Data

5.2 Extended SQL Trace Data Reference

One of the reasons for Oracle Corporation's enormous success in the high-performance database market is the easy
accessibility of detailed response time data. Beginning with extended SQL trace files and extending throughout
several fixed views, the Oracle kernel provides you all the detail you need in order to know why an application has
consumed exactly the response time that it did. The only thing that might be missing is whether you understand how
to exploit all that detail. Filling this gap is the mission of my work in this book.

5.2.1 Trace File Element Definitions

Several good sources exist to describe the format of each trace file line [Oracle MetaLink note 39817.1; Kyte (2001)
464-475; Morle (2000) 133-142]. However, none goes far enough to enable full accounting of session response time.
Full response time accounting is the goal that you will achieve with the book you are reading now. The following
sections describe the meaning of each of the performance-related statistics reported in Oracle's extended SQL trace
data.

5.2.1.1 Cursor numbers

Each line emitted to a trace file corresponds to one "action" executed by the Oracle kernel program. Each line uses the
string #ID to identify a cursor upon which the kernel performed the action. For example, the following line shows a
fetch executed upon cursor #1:

FETCH #1:c=0,e=177,p=0,cr=1,cu=2,mis=0,r=1,dep=0,og=4,tim=1038931660054596

The cursor numbers are relevant only within the scope of the trace file. Furthermore, the Oracle kernel makes a cursor
number available for reuse within a trace file when a cursor is closed. Hence, trace file lines containing references to a
given cursor number do not all necessarily refer to the same cursor. Fortunately, a given trace file contains a time-
ordered record of every cursor creation; each PARSING IN CURSOR token indicates a cursor birth (or rebirth). For
example, the following are two PARSING IN CURSOR lines from the trace file in Example 5-2:

=
PARSING IN CURSOR #1 len=69 dep=0 uid=5 oct=42 lid=5 tim=1038931660052098
hv=1509700594 ad='50d6d560'
alter session set events '10046 trace name context forever, level 12'
END OF STMT
...
=
PARSING IN CURSOR #1 len=51 dep=0 uid=5 oct=3 lid=5 tim=1038931660054075
hv=1716247018 ad='50c551f8'
select 'Hello, world; today is '||sysdate from dual
END OF STMT

The first PARSING IN CURSOR section indicates that cursor #1 was associated with the ALTER SESSION statement.
Later in the same trace file, the Oracle kernel reused ID #1 for the cursor associated with the SELECT statement.

5.2.1.2 Session identification and timestamps

A line beginning with the token *** indicates the system time obtained immediately before the *** line itself was
emitted to the trace file. For example:

*** 2002-12-02 22:25:53.716
*** SESSION ID:(8.6550) 2002-12-02 22:25:53.714

Page 1 of 10O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

This information helps the performance analyst by establishing a mapping from Oracle's tim value clock to the system
wall clock. The Oracle kernel helpfully emits a *** line into the trace data any time there has been a significant amount
of time (tens of seconds) elapsed since the emission of the previously emitted trace line. This feature is helpful
because it allows you to resynchronize your understanding of the correct wall clock time over large spans of WAIT
lines, which contain approximate elapsed durations (ela), but no internal clock (tim) values. If you want to emit this
line yourself to your trace data, you can do so by calling DBMS_SYSTEM.KSDDDT.

A line containing the token SESSION ID:(m.n) identifies the trace file lines that follow the SESSION ID line as being
associated with the Oracle session with V$SESSION.SID=m and V$SESSION.SERIAL#=n. The session identification lines
help you ensure that you are analyzing the correct trace file. In Oracle multithreaded server (MTS) configurations, the
lines are especially valuable, because each Oracle kernel process can service requests on behalf of many Oracle
sessions. Lines containing a session ID signal which session's work is represented in the raw trace lines that follow.

Did you notice that the timestamp and session identification lines shown here are printed out of time sequence? (The
first line marks time 22:25:53.716, and the second one marks a time 0.002 seconds earlier.) This phenomenon is
similar to the one described later in Section 5.2.1.4.

5.2.1.3 Application identification

If the application has set its module name or action with the DBMS_APPLICATION_INFO package, then the Oracle
kernel will emit an APPNAME line when level-1 SQL tracing is activated. For example:

APPNAME mod='SQL*Plus' mh=3669949024 act='' ah=4029777240

The individual values in this line are as follows:

mod

The name of the module set with the SET_MODULE procedure.

mh

A "hash value" that identifies the module.

act

The name of the action set with either SET_MODULE or SET_ACTION.

ah

A "hash value" that identifies the action.

5.2.1.4 Cursor identification

A PARSING IN CURSOR section contains information about a cursor. For example:

=
PARSING IN CURSOR #135 len=358 dep=0 uid=173 oct=3 lid=173 tim=3675359494 hv=72759792
ad='bb13f788'
select vendor_number, vendor_id, vendor_name, vendor_type_lookup_code, type_1099,
employee_id, num_1099, vat_registration_num, awt_group_id, allow_awt_flag, hold_all_
payments_flag, num_active_pay_sites, total_prepays, available_prepays from po_
vendors_ap_v where (VENDOR_NUMBER LIKE :1) AND (active_flag = 'Y' and enabled_flag =

Page 2 of 10O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

'Y') order by vendor_number
END OF STMT

The PARSING IN CURSOR line itself contains information about cursor #ID. Text between the PARSING IN CURSOR line
and the corresponding END OF STMT line is the cursor's SQL text. The Oracle kernel usually emits this section at the
conclusion of a parse call, just before the kernel emits a cursor's PARSE line. However, if tracing was not active when
the parse call completed, the kernel will usually emit near the beginning of the trace data (just before the completion
of the first traced database call, but potentially after one or more WAIT lines), as if the Oracle kernel were executing
the following pseudocode:

Upon completion of Oracle kernel activity required by a db call...
if SQL tracing level >= 1 {
 if db call is PARSE or pic[cursor_id] is unset {
 emit "PARSING IN CURSOR" section
 pic[cursor_id] = 1
 }
 emit statistics for the db call
}

Thus, Oracle reveals information in the trace file about a cursor even if tracing was not active at the conclusion of the
cursor's parse call.

Each PARSING IN CURSOR line contains the following information about a cursor:

len

The length of the SQL text.

dep

The recursive depth of the cursor. A dep=n + 1 cursor is a child of some dep=n cursor (n = 0, 1, 2, ...). Several
actions motivate recursive SQL, including database calls that require information from the Oracle database
dictionary, statements that fire triggers, and PL/SQL blocks that contain SQL statements. See Section 5.3.3
later in this chapter for further discussion of the "recursive" SQL relationship.

uid

The schema user ID of the user who parsed the statement.

oct

The Oracle command type ID [Oracle OCI (1999)].

lid

The privilege user ID. For example, if FRED calls a package owned by JOE, then a SQL statement executed
within the package will have a uid that refers to FRED, and an lid that refers to JOE.

tim

If a tim value is 0, then TIMED_STATISTICS for the session was false when the database call time would have
been calculated. You can thus confirm whether TIMED_STATISTICS was true by observing tim values. In our

Page 3 of 10O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

field work, my colleagues and I have found that specific non-zero tim values associated with PARSING IN
CURSOR sections are largely irrelevant.

In Oracle9i, tim is a value expressed in microseconds (1 µs = 0.000 001 seconds). On some systems (such as
our Linux research servers), tim field values are unadulterated gettimeofday values. On other systems (like our
Microsoft Windows research machines), the origin of tim field values can be much more mysterious. In
releases prior to Oracle9i, tim is a V$TIMER.HSECS value expressed in centiseconds (1 cs = 0.01 seconds).

hv

The statement ID of the SQL statement. The hv may look unique, but it is not. Occasionally (albeit rarely),
distinct SQL texts share the same hv value.

ad

The library cache address of the cursor, as is shown in V$SQL.

5.2.1.5 Database calls

A database call is a subroutine in the Oracle kernel. If level-1 SQL tracing is active when a database call completes,
then the Oracle kernel emits a database call line upon completion of that database call. PARSE, EXEC, and FETCH calls
are the most common types of database call. For example:

PARSE #54:c=20000,e=11526,p=0,cr=2,cu=0,mis=1,r=0,dep=1,og=0,tim=1017039304725071
EXEC #1:c=10000,e=12137,p=0,cr=22,cu=0,mis=0,r=1,dep=0,og=4,tim=1017039275981174
FETCH #3:c=10000,e=306,p=0,cr=3,cu=0,mis=0,r=1,dep=2,og=4,tim=1017039275973158

Other database call types (for example, ERROR, UNMAP, and SORT UNMAP) are explained in Oracle MetaLink note
39817.1. Each database call line contains the following statistics:

c

The total CPU time consumed by the Oracle process during the call. Oracle9i expresses c in microseconds (1
µs = 0.000 001 seconds). Prior kernel versions express c in centiseconds (1 cs = 0.01 seconds).

e

The amount of wall time that elapsed during the call. Oracle9i expresses e in microseconds (1 µs = 0.000 001
seconds). Prior kernel versions express e in centiseconds (1 cs = 0.01 seconds).

p

The number of Oracle database blocks obtained by the call via operating system disk read calls. The name p is
supposed to be mnemonic for the word "physical," but note that not every so-called Oracle "physical" read
visits a physical disk device. Many such reads are serviced from various caches between the Oracle kernel and
the physical disk.

cr

The number of Oracle database blocks obtained by the call in consistent mode from the Oracle database buffer

Page 4 of 10O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...
www.allitebooks.com

http://www.allitebooks.org

cache. A read executed in consistent mode can motivate additional consistent mode reads from undo blocks,
which are stored in rollback segments.

cu

The number of Oracle database blocks obtained by the call in current mode from the Oracle database buffer
cache. A read executed in current mode is simply a read of the current content of a block.

mis

The number of library cache misses encountered during the call. Each library cache miss motivates a hard
parse operation.

r

The number of rows returned by the call.

dep

The recursive depth of the cursor. A dep=n + 1 cursor is a child of some dep=n cursor (n = 0, 1, 2, ...). See
Section 5.2.1.4 earlier in this chapter for more details.

og

The optimizer goal in effect during the call. Oracle uses the values shown in Table 5-1.

tim

See Section 5.2.1.4 listed previously for details.

Note that the Oracle kernel does not emit a database call line into the trace file until the action has completed. Thus,
an extraordinarily long database operation might cause the Oracle kernel to work for several hours without emitting
anything to the trace file. Poorly optimized SQL can produce EXEC calls (for updates or deletes) or FETCH calls (for
selects) that consume CPU capacity for several days at a time.

5.2.1.6 Wait events

An Oracle wait event is a sequence of Oracle kernel instructions that is wrapped with special timing instrumentation.
If level-8 or level-12 SQL tracing is active when a wait event completes, then the Oracle kernel emits a WAIT line

Table 5-1. Oracle query optimizer goal by og value (source: Oracle MetaLink note 39817.1)

og value Oracle query optimizer goal

1 ALL_ROWS

2 FIRST_ROWS

3 RULE

4 CHOOSE

Page 5 of 10O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

upon completion of that event. For example:

WAIT #1: nam='SQL*Net message to client' ela= 40 p1=1650815232 p2=1 p3=0
WAIT #1: nam='SQL*Net message from client' ela= 1709 p1=1650815232 p2=1 p3=0
WAIT #34: nam='db file sequential read' ela= 14118 p1=52 p2=2755 p3=1
WAIT #44: nam='latch free' ela= 1327989 p1=-1721538020 p2=87 p3=13

Each WAIT line contains the following statistics about work executed during the event:

nam

The name assigned by an Oracle kernel developer to reveal which part of the Oracle kernel code is responsible
for this portion of your response time.

ela

The elapsed duration of the named event's execution. Oracle9i expresses ela in microseconds (1 µs = 0.000
001 seconds). Prior kernel versions express ela in centiseconds (1 cs = 0.01 seconds).

p1, p2, p3

The meanings of these parameters vary by nam. A complete catalog of parameter descriptions for each event
type is available by running the following SQL:

select name, parameter1, parameter2, parameter3
from v$event_name order by name

Note that WAIT lines appear in the trace data before the database call that motivated them. This occurs because the
Oracle kernel emits lines into the trace file as events complete. Thus, if a fetch call requires three OS read calls, the
three waits for the read calls will appear in the trace file before Oracle emits the information about the completed
fetch call.

The WAIT lines in SQL trace data are one interface to the new Oracle feature introduced in 1992 that has been so
important in revolutionizing the ease with which we can diagnose and repair performance problems today.

5.2.1.7 Bind variables

If level-4 or level-12 SQL tracing is active when the Oracle kernel binds values to placeholders in an application's
SQL text, the kernel emits a BINDS section. For example:

=
PARSING IN CURSOR #1 len=105 dep=0 uid=56 oct=47 lid=56 tim=1017039275982462
hv=2108922784 ad='98becef8'
declare dummy boolean;begin fnd_profile.get_specific(:name, :userid, :respid, :
applid, :val, dummy);end;
END OF STMT
...
Several lines have been omitted for clarity
...
BINDS #1:
 bind 0: dty=1 mxl=2000(1998) mal=00 scl=00 pre=00 oacflg=01 oacfl2=0 size=2000
offset=0
 bfp=025a74a0 bln=2000 avl=19 flg=05
 value="MFG_ORGANIZATION_ID"
 bind 1: dty=2 mxl=22(22) mal=00 scl=00 pre=00 oacflg=01 oacfl2=0 size=72 offset=0
 bfp=025a744c bln=22 avl=04 flg=05
 value=118194
 bind 2: dty=2 mxl=22(22) mal=00 scl=00 pre=00 oacflg=01 oacfl2=0 size=0 offset=24

Page 6 of 10O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

 bfp=025a7464 bln=22 avl=05 flg=01
 value=1003677
 bind 3: dty=2 mxl=22(22) mal=00 scl=00 pre=00 oacflg=01 oacfl2=0 size=0 offset=48
 bfp=025a747c bln=22 avl=03 flg=01
 value=140
 bind 4: dty=1 mxl=2000(1998) mal=00 scl=00 pre=00 oacflg=01 oacfl2=0 size=2000 offset=0
 bfp=025ba490 bln=2000 avl=00 flg=05

A BINDS section contains one or more bind subsections, one for each variable being bound. The number following the
word bind indicates the ordinal position, beginning at 0, of the bind variable within the SQL text. Each bind section
contains several statistics about the bind. The most important ones for use in performance analysis are:

dty

The external data type of the value supplied by the application [Oracle OCI (1999)]. Oracle publishes two sets
of data types: internal and external. The internal data type definitions reveal how the Oracle kernel stores its
data on the host operating system. The external data type definitions reveal how the Oracle kernel interfaces
with application SQL.

The external data type of a bind value is important. Occasionally we find SQL statements for which the Oracle
query optimizer flatly refuses to use an obviously helpful index. Sometimes such a case is caused by a
mismatch between the column type and the value type, which can force an implicit type coercion function to
be executed upon the column, which prevents the optimizer from choosing that index.

avl

The length, in bytes, of the bind value.

value

The value that is bound into the statement execution. The Oracle kernel sometimes truncates values that it
emits into the trace file. You can determine exactly when this has happened by simple inspection; truncation
has occurred any time the avl value is larger than the length of the value field.

5.2.1.8 Row source operations

If level-1 SQL tracing is active when a cursor is closed, then the Oracle kernel emits one STAT line for each row
source operation in the cursor's execution plan. For example:

STAT #1 id=1 cnt=55 pid=0 pos=1 obj=0 op='SORT UNIQUE (cr=39741 r=133 w=0
time=1643800 us)'
STAT #1 id=2 cnt=23395 pid=1 pos=1 obj=0 op='VIEW (cr=39741 r=133 w=0 time=1614067
us)'
STAT #1 id=3 cnt=23395 pid=2 pos=1 obj=0 op='SORT UNIQUE (cr=39741 r=133 w=0
time=1600554 us)'
STAT #1 id=4 cnt=23395 pid=3 pos=1 obj=0 op='UNION-ALL (cr=39741 r=133 w=0
time=1385984 us)'

If a trace file does not contain the STAT lines you were hoping to find, it is because tracing was deactivated before the
cursor closed. The STAT lines will of course be absent any time you trace a well-designed persistent service that
neither terminates nor closes its cursors more than once every several weeks.

Each STAT line contains the following statistics about the cursor's execution plan:

id

Page 7 of 10O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The unique ID of the row source operation within the STAT line set.

cnt

Number of rows returned by this row source operation.

pid

ID of this operation's parent operation.

pos

The best we can determine, an arbitrary number. It might seem that this value might define the "position" of a
row source operation within a set of operations belonging to a single parent, but it appears that sibling row
source operations are ordered in increasing ID order.

obj

Object ID of the row source operation, if the operation executes upon a "base object." A row source operation
such as NESTED LOOPS, which itself does not access a base object, will report obj=0. (The NESTED LOOPS
operation's children do access base objects, but the NESTED LOOPS row source operation itself does not.)

op

The name of the row source operation. Beginning with Oracle Release 9.2.0.2.0, the kernel emits additional
information into the STAT lines [Rivenes (2003)]. The new information reveals several useful statistics for
each row source operation, including:

cr

Number of consistent-mode reads.

r

Number of Oracle blocks read with OS read calls.

w

Number of Oracle blocks written with OS read calls.

time

The elapsed duration, expressed in microseconds (us).

The statistics for a parent row source operation include a roll-up of the statistics for its children.

Page 8 of 10O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

5.2.1.9 Transaction end markers

If level-1 SQL tracing is active when a commit or rollback occurs, then the Oracle kernel emits an XCTEND line upon
completion of the call. For example:

XCTEND rlbk=0, rd_only=0

Each XCTEND line contains the following statistics about work executed during the commit or rollback:

rlbk

True (1) if and only if the transaction was rolled back.

rd_only

True (1) if and only if the transaction changed no data in the database.

Notice that the XCTEND marker has no cursor ID reference. This is because there is a one-to-many relationship
between a transaction and the cursors that participate in the transaction.

5.2.1.10 Reference summary

Table 5-2 summarizes the raw trace data statistics that will be most interesting to you during your performance
analysis work.

Oracle's tkprof utility produces erroneous results in more cases than you might have
imagined, especially in STAT line processing. Oracle's tkprof has an exceptional reputation
for reliability, but I'm convinced that one reason the tool maintains this reputation is that
people simply never bother to double-check its output. To confirm or refute whether
tkprof is giving correct output is impossible to do without studying raw trace data. Most
people are reluctant to do this. I hope this book helps encourage you to make the effort.

Table 5-2. Descriptions of selected elements from extended SQL trace data

Field Occurs in . . . Description

 Cursor
ID

Database
call

Wait
event

c Total CPU time consumed by the database call. Reported in
microseconds on Oracle9i, centiseconds on prior releases.

cr Number of Oracle blocks obtained from the database buffer cache in
consistent mode.

cu
Number of Oracle blocks obtained from the database buffer cache in
current mode.

dep The recursive depth of the cursor.

e Elapsed duration consumed by the database call. Reported in
microseconds on Oracle9i, centiseconds on prior releases.

ela
Elapsed duration consumed by the wait event. Reported in
microseconds on Oracle9i, centiseconds on prior releases.

Page 9 of 10O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-5-SECT-2

5.2.2 Oracle Time Units

Oracle9i kernels report SQL trace timing statistics in microseconds (1 µs = 0.000 001 seconds). Oracle release 6, 7,
and 8 kernels report SQL trace timing statistics in centiseconds (1 cs = 0.01 seconds). Table 5-3 summarizes the unit
of measure that the Oracle kernel uses for each type of time statistics in extended SQL trace data.

Table 5-4 explains the meaning of the time units that you will use as an Oracle performance analyst.

hv Statement ID.

mis Number of misses upon the library cache.

nam Name of the wait event.

p Number of Oracle blocks obtained via operating system read calls.

p1, p2,
p3 Information about the wait event; varies by value of nam.

tim The internal Oracle time at which an event completed.

Table 5-3. Trace file time statistic units by Oracle version

Oracle version c e ela tim

9 µs µs µs µs

8 cs cs cs cs

7 cs cs cs cs

6 cs cs N/A cs

Table 5-4. Time units commonly used by computer performance analysts

Unit name Abbreviation Duration in seconds (s)

Second 1 s 1 s 1E-0 s 1. s

Centisecond 1 cs 1/100 s 1E-2 s 0.01 s

Millisecond 1 ms 1/1,000 s 1E-3 s 0.001 s

Microsecond 1 µs 1/1,000,000 s 1E-6 s 0.000 001 s

Page 10 of 10O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 5. Interpreting Extended SQL Trace Data

5.3 Response Time Accounting

The Oracle kernel emits two categories of time into a trace file:

1. Time consumed within a database call

2. Time consumed between database calls

A session's total response time is the sum of all time spent within database calls, plus the sum of all time consumed
between database calls. To keep from over- or under-accounting for response time in your trace file, you must know
the proper category for each line of your trace file.

5.3.1 Time Within a Database Call

The trace file excerpt in Example 5-3 shows actions that consume time within three different database calls. The first
database call to complete was a parse call that consumed 306 µs. The kernel helpfully supplied the PARSING IN
CURSOR section before emitting the PARSE line so that you and I can tell what got parsed. Next, the kernel emitted an
EXEC line, which means that an execute call completed upon the cursor, consuming an additional 146 µs of elapsed
time. The next actions to complete are two operating system read calls denoted on the two WAIT lines. The "parent"
operation responsible for issuing these read calls is the fetch call whose statistics are reported on the FETCH line.

Example 5-3. This trace file excerpt demonstrates the consumption of time within three database calls

=
PARSING IN CURSOR #4 len=132 dep=1 uid=0 oct=3 lid=0 tim=1033064137929238 hv=3111103299
ad='517ba4d8'
select /*+ index(idl_ub1$ i_idl_ub11) +*/ piece#,length,piece from idl_ub1$ where obj#=:1
and part=:2 and version=:3 order by piece#
END OF STMT
PARSE #4:c=0,e=306,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1033064137929139
EXEC #4:c=0,e=146,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1033064137931262
[1] WAIT #4 nam='db file sequential read' ela= 13060 p1 =1 p2=53903 p3=1
[2] WAIT #4 nam='db file sequential read' ela= 6978 p1= 1 p2=4726 p3=1
[3] FETCH #4: c=0,e=21340,p=2,cr=3,cu=0,mis=0,r=0,dep=1,og=4,tim=1033064137953092
STAT #4 id=1 cnt=0 pid=0 pos=0 obj=72 op='TABLE ACCESS BY INDEX ROWID IDL_UB1$ '
STAT #4 id=2 cnt=0 pid=1 pos=1 obj=120 op='INDEX RANGE SCAN '

The lines for the read calls occur in the trace data before the line for the fetch that motivated them because the Oracle
kernel emits the statistics for an action upon that action's completion. The Oracle kernel instructions that produced
these trace lines looked something like this:

fetch IDL_UBL$ query
 execute some of the instructions necessary for the IDL_UBL$ fetch
 perform a single-block I/O call upon file 1, block 53903
 emit [1] "WAIT #4: nam='db file sequential read' ela=13060 ..."
 execute some more fetch instructions
 perform a single-block I/O call upon file 1, block 4726
 emit [2] "WAIT #4: nam='db file sequential read' ela=6978 ..."
 execute the remainder of the fetch instructions
 emit [3] "FETCH #4:c=0,e=21340,..."
close the cursor
etc.

The fetch call consumed a total elapsed duration of 21,340 µs. The components of the response time for the fetch call
are shown in Table 5-5.

Page 1 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The e statistic for a database call is the elapsed duration of the entire database call. Thus, the value of e includes the
duration of all CPU time consumed by the call (reported as the value of c), plus all of the elapsed time consumed by
wait events executed in the context of the database call (reported as ela values). Figure 5-1 shows the relationship;
formally, we write:

This is the fundamental relationship of Oracle time statistics within a single database call. The relationship is only
approximate because of factors including measurement intrusion effect, quantization error, time spent not executing,
and un-instrumented Oracle kernel code segments, which I discuss in Chapter 7.

Figure 5-1. The fundamental relationship of Oracle time statistics within a single database call: the total
elapsed duration (e) approximately equals the total CPU time for the call (c) plus the sum of the durations of its

wait events (ΣΣΣΣela)

5.3.2 Time Between Database Calls

The Oracle kernel also emits elapsed durations for wait events that occur between database calls. Examples of wait
events that occur between database calls include:

SQL*Net message from client
SQL*Net message to client

Table 5-5. Components of the fetch call response time

Response time Component

13,060 µs db file sequential read

6,978 µs db file sequential read

0 µs Total CPU

1,302 µs Unaccounted for

21,340 µs Total elapsed time for the fetch

Page 2 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

single-task message
pipe get
rdbms ipc message
pmon timer
smon timer

The trace file excerpt in Example 5-4 shows wait events that occur between database calls. The application depicted
here makes the scalability-inhibiting mistake of parsing too often. As you can see, the excerpt shows two consecutive
parse calls (bold) of the exact same SQL text. The WAIT lines (bold and italic) occur between the parse calls both in
the sense of where they are located in the trace file and also because the elapsed times of these actions are not tallied
into the elapsed time of the second parse call. You can confirm this by noticing that the elapsed duration recorded for
the second PARSE line (e=0) is too small to contain the elapsed duration for the SQL*Net message from client event (ela=
3).

Example 5-4. This trace file excerpt demonstrates the consumption of time between two identical parse calls on
an Oracle8i system

=
PARSING IN CURSOR #9 len=360 dep=0 uid=26 oct=2 lid=26 tim=1716466757 hv=2475520707
ad='d4c55480'
INSERT INTO STAGING_AREA (TMSP_LAST_UPDT, OBJECT_RESULT, USER_LAST_UPDT, DOC_OBJ_ID,
TRADE_NAME_ID, LANGUAGE_CODE) values(TO_DATE('11/05/2001 16:39:06', 'MM/DD/YYYY HH24:MI:
SS'), 'if (exists (stdphrase ("PCP_MAV_1")) , langconv ("Incompatibility With Other
Materials") + ": " , log_omission ("Materials to Avoid: "))', 'sa', 222, 54213, 'NO_
LANG')
END OF STMT
PARSE #9:c=0,e=0,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=4 ,tim=1716466757

WAIT #9: nam='SQL*Net message to client' ela= 0 p1= 1413697536 p2=1 p3=0

WAIT #9: nam='SQL*Net message from client' ela= 3 p 1=1413697536 p2=1 p3=0
=
PARSING IN CURSOR #9 len=360 dep=0 uid=26 oct=2 lid=26 tim=1716466760 hv=2475520707
ad='d4c55480'
INSERT INTO STAGING_AREA (TMSP_LAST_UPDT, OBJECT_RESULT, USER_LAST_UPDT, DOC_OBJ_ID,
TRADE_NAME_ID, LANGUAGE_CODE) values(TO_DATE('11/05/2001 16:39:06', 'MM/DD/YYYY HH24:MI:
SS'), 'if (exists (stdphrase ("PCP_MAV_1")) , langconv ("Incompatibility With Other
Materials") + ": " , log_omission ("Materials to Avoid: "))', 'sa', 222, 54213, 'NO_
LANG')
END OF STMT
PARSE #9:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4 ,tim=1716466760

With this knowledge, you can refine your understanding of the relationship among c, e, and ela statistics for an entire
trace file. Given what you've seen so far, total response time for a session equals the total amount of time spent within
database calls, plus the total amount of time spent between database calls. We can state this formally as:

However, there is one final complication: the double-counting imposed by the presence of recursive SQL.

5.3.3 Recursive SQL Double-Counting

Recursive SQL is the SQL associated with any database call that has a dep value that is greater than zero. A dep=n + 1
database call (for n = 0, 1, 2, ...) can be regarded as a child of some dep=n database call. Application sessions routinely
produce complicated enough trace data to produce a whole forest of relationships among SQL statements that act as

Page 3 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

each other's parents, children, siblings, and so on. Each SQL trace file contains enough information to enable you to
determine the exact parent-child relationships among database calls. To account for a session's response time without
double-counting some statistics, you must understand how to determine the recursive relationships among database
calls.

5.3.3.1 Parent-child relationships

The term recursive denotes the Oracle kernel's execution of database calls within the context of other database calls.
Activities that inspire recursive SQL include execution of DDL statements, execution of PL/SQL blocks with DML
statements within them, database call actions with triggers on them, and all sorts of routine application DML
statements that motivate data dictionary access. Any database call that can execute another database call can motivate
recursive SQL.

Example 5-5 is a trace file excerpt that contains evidence of recursive SQL in action. In this excerpt, you can see
information about a new cursor labeled #2, which is associated with the following SQL text:

select text from view$ where rowid=:1

This SQL text appears nowhere within the source of the application that was traced. This SQL was motivated by the
parse of a query from the DBA_OBJECTS view.

Example 5-5. A trace file excerpt containing evidence of recursive SQL. The three cursor #2 actions at dep=1
are recursive children of the dep=0 parse action upon cursor #1

=
[1] PARSING IN CURSOR #2 len=37 dep=1 uid=0 oct=3 lid=0 tim=1033174180230513
hv=1966425544 ad='514bb478'
select text from view$ where rowid=:1
END OF STMT
[2] PARSE #2:c=0,e=107,p=0,cr=0,cu=0,mis=0,r=0,dep=1 ,og=4,tim=1033174180230481
[3] BINDS #2:
 bind 0: dty=11 mxl=16(16) mal=00 scl=00 pre=00 oacflg=18 oacfl2=1 size=16 offset=0
 bfp=0a22c34c bln=16 avl=16 flg=05
 value=00000AB8.0000.0001
[4] EXEC #2:c=0,e=176,p=0,cr=0,cu=0,mis=0,r=0,dep=1 ,og=4,tim=1033174180230878
[5] ETCH #2:c=0,e=89,p=0,cr=2,cu=0,mis=0,r=1,dep=1 ,og=4,tim=1033174180231021
[6] TAT #2 id=1 cnt=1 pid=0 pos=0 obj=62 op='TABLE ACCESS BY USER ROWID VIEW$ '
=
[7] PARSING IN CURSOR #1 len=85 dep=0 uid=5 oct=3 lid=5 tim=1033174180244680
hv=1205236555 ad='50cafbec'
select object_id, object_type, owner, object_name from dba_objects where object_id=:v
END OF STMT
[8] PARSE #1:c=10000,e=15073,p=0,cr=2,cu=0,mis=1,r=0,dep=0 ,og=0,tim=1033174180244662

The rule for determining the recursive relationships among database calls is simple:

A database call with dep=n + 1 is the recursive child of the first subsequent dep=n database call listed in
the SQL trace data stream.

Example 5-6 shows by example why this is true. The Oracle kernel can emit trace data for a database call only after
the action has completed. (The kernel cannot compute, for example, the call's elapsed time until after the call has
completed.) Thus we can reconstruct the sequence of instructions that generated the SQL trace data shown in Example
5-5. Specifically, in this example, all the database calls for the VIEW$ query are recursive children of the parse call for
the DBA_OBJECTS query. The indentation levels for procedures in the call stack shown in Example 5-6 highlight the
recursive parent-child relationship among database calls.

Example 5-6. This sequence of Oracle kernel instructions emits SQL trace data in the order shown in Example
5-5. In this listing, indentation is proportional to call stack depth

parse DBA_OBJECTS query
 # query VIEW$ to obtain the definition of DBA_OBJECTS
 parse VIEW$ query

Page 4 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

 # execute the instructions necessary for the VIEW$ parse
 emit [1] "PARSING IN CURSOR #2 ..."
 emit [2] "PARSE #2: ..."
 bind to the VIEW$ cursor
 # execute the instructions necessary for the VIEW$ bind
 emit [3] "BINDS #2: ..."
 execute the VIEW$ cursor
 # execute the instructions necessary for the VIEW$ exec
 emit [4] "EXEC #2: ..."
 fetch from the VIEW$ cursor
 # execute the instructions necessary for the VIEW$ fetch
 emit [5] "FETCH #2: ..."
 close the VIEW$ cursor
 # execute the instructions necessary for the VIEW$ close
 emit [6] "STAT #2: ..."
 # execute the remaining instructions for the DBA_OBJECTS parse
 emit [7] "PARSING IN CURSOR #1 ..."
 emit [8] "PARSE #1: ..."

Figure 5-2 shows a graphical representation of the parent-child relationships among the database calls.

Figure 5-2. The recursive call stack for Example 5-5 expressed graphically

5.3.3.2 Recursive statistics

In Oracle releases through at least Oracle9i Release 2, a database call's c, e, p, cr, and cu statistics contain an
aggregation of the resources consumed by the database call itself and its entire recursive progeny.

Figure 5-3 illustrates such a relationship for a fictional set of database calls. Each node (rectangle) in the graph
represents a database call (e.g., a PARSE, EXEC, or FETCH). A directed line from some node A to another node B
denotes that database call A is a recursive parent (that is, the caller) of database call B. The cr=n listed inside the node
is the statistic that the Oracle kernel will emit for the database call. The value of crself is the number of consistent-

mode reads executed by the database call itself, exclusive of its children's call counts.

Figure 5-3. Each of a database call's c, e, p, cr, and cu statistics is an aggregation of consumption on that
statistic for that database call's entire recursive family tree

A database call's recursive progeny consists of all recursive descendants of the database
call, including children, grandchildren, great-grandchildren, and so on.

Page 5 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The kernel emits only the progeny-inclusive statistics, but from these statistics you can derive the progeny-exclusive
statistics shown inside the nodes. For example, if the numbers inside the nodes in Figure 5-3 had been omitted, it
would be easy to fill them in. Each node's value is simply the statistic value for that node minus the sum of the
statistic values reported for that node's direct descendants. The value of a node at dep=k is thus the cr value reported
for that database call minus the sum of the cr values of its dep=k + 1 descendants. Or, to generalize, we can say that the
quantity s of a resource consumed by a database call at dep=k is:

where si is the value of a statistic in the set {c, e, p, cr, cu} reported by the Oracle kernel at recursive depth i.

You can use this technique easily enough on real trace data. Again consider the database calls described in Example
5-5. Figure 5-4 illustrates the progeny-inclusive elapsed time value for each database call (denoted e) and the
progeny-exclusive elapsed time contribution for each database call (denoted eself).

Figure 5-4. The recursive call stack for Example 5-5 expressed graphically

Table 5-6 shows all the progeny-exclusive statistics associated with each database call in Example 5-5. The progeny-
exclusive contribution to elapsed time for the PARSE #1 database call, for example, is:

Table 5-6. The c, e, p, cr, and cu statistics for a cursor include that cursor's activity by itself plus the activity
of all of its recursive children. You can derive a cursor's individual activity by using subtraction

Resources consumed by... c e p cr cu

PARSE #1, including its recursive progeny 10,000 15,073 0 2 0

Page 6 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-5-SECT-3

Now we have enough information to complete the response time accounting formula. When we eliminate the double-
counting influences of recursive SQL, we have, finally:

That is, the total response time for a trace file approximately equals the sum of the file's e values for database calls at
recursive depth zero, plus the sum of the file's ela values for wait events that occur between database calls. A file's
total response time approximately equals the sum of the file's c values for database calls at depth zero, plus the sum of
all the file's ela values.

PARSE #2, a child 0 107 0 0 0

EXEC #2, a child 0 176 0 0 0

FETCH #2, a child 0 89 0 2 0

PARSE #1 excluding its recursive progeny 10,000 14,701 0 0 0

Page 7 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 5. Interpreting Extended SQL Trace Data

5.4 Evolution of the Response Time Model

In the 1980s, when most of today's "tuning methods" were invented, Oracle's SQL trace facility did not yet have the
capability to emit wait event timing information—the WAIT lines—into the trace file. The c, e, and tim data were the
only trace data elements that we had. Of course, if most of an application's response time had been spent consuming
CPU, then the c and e data told us most of what we needed to know about the performance of our database calls.
However, if some of a database call's response time was not due to CPU consumption, then our analysis became more
difficult.

For example, consider the following fetch call statistics obtained from an application running on Oracle 8.1.7.2:

FETCH #1:c=80741,e=151841,p=9628,cr=34304348,cu=10,mis=0,r=0,dep=0,og=4,tim=87762034

This fetch call consumed 1,518.41 seconds of elapsed time, only 807.41 of which was spent on the CPU. Where did
the other 711.00 seconds of response time go? Was it latch contention? Enqueue waits? Long disk queues? Excessive
paging? We simply cannot know by looking at this FETCH line. Its statistics contain insufficient information to
determine where the unaccounted-for 711 seconds of elapsed time went. Certainly, a large p value is a clue that some
of the unaccounted-for e time might have been consumed by OS read calls, but there are roughly 200 different wait
events that Oracle could have executed during those 711 seconds. From viewing only the fetch statistics shown here,
we cannot know how the 711 seconds were consumed.

In 1992 with the release of kernel Version 7.0.12, Oracle Corporation published an elegant solution to this problem.
The new mechanism that Oracle provided was simply to instrument several events executed by the Oracle kernel that
consume elapsed time but not CPU capacity. The value of the so-called wait data is absolutely extraordinary. It helps
to fill in the time gap between e and c. Anjo Kolk and Shari Yamaguchi were the first to document the use of "wait
data" in the document that became the landmark YAPP Method [Kolk and Yamaguchi (1999)].

Let's revisit our previous example, in which we had 711 seconds of unaccounted-for time. Instructing the Oracle
kernel to produce the WAIT statistics adds 9,748 more lines of data to our trace file before the fetch call. Executing the
Perl program in Example 5-7 upon 9,749 lines of trace data produces the following resource profile:

$ prof-cid waits.1.trc
 Duration Pct Oracle kernel event
--------- ------ --
 807.41s 53.2% total CPU
 426.26s 28.1% direct path write
 197.29s 13.0% db file sequential read
 76.23s 5.0% unaccounted-for
 8.28s 0.5% latch free
 2.87s 0.2% db file scattered read
 0.05s 0.0% file open
 0.02s 0.0% buffer busy waits
 0.00s 0.0% SQL*Net message to client
--------- ------ --
 1518.41s 100.0% Total response time

Now we know. Over 53% of the response time for the fetch was consumed on a CPU in user mode. Over 28% was
consumed writing (surprise!) to disk. Another 13% was consumed by reading from disk, and roughly another 6% of
the response time was consumed in various other wait events.

Example 5-7. A Perl program that creates a resource profile from raw SQL trace data for a single, simple
Oracle database call (with no associated recursive database calls)

#!/usr/bin/perl

Page 1 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

$Header: /home/cvs/cvm-book1/sqltrace/prof-cid.pl,v 1.4 2003/03/20 23:32:32 cvm Exp $
Cary Millsap (cary.millsap@hotsos.com)
Copyright (c) 1999-2003 by Hotsos Enterprises, Ltd. All rights reserved.

Create a resource profile for a single database call.
Usage: $0 file.trc

Requires input of Oracle extended SQL trace data (level 8 or level 12)
that has been pre-filtered to contain only a single database call (that
is, a single PARSE, EXEC, FETCH, UNMAP, or SORT UNMAP with no recursive
children) and the WAIT lines associated with that db call. Example input
file content:

WAIT #2: nam='db file sequential read' ela= 0 p1=2 p2=3240 p3=1 WAIT
#2: nam='db file sequential read' ela= 0 p1=2 p2=3239 p3=1 FETCH
#2:c=213,e=998,p=2039,cr=100550,cu=5,mis=0,r=0,dep=0,og=4,tim=85264276

use strict;
use warnings;
my $cid; # cursor id
my %ela; # $ela{event} contains sum of ela statistics for event
my $sum_ela = 0; # sum of all ela times across events
my $r = 0; # response time for database call
my $action = "(?:PARSE|EXEC|FETCH|UNMAP|SORT UNMAP)";
while (<>) {
 if (/^WAIT #(\d+): nam='([^']*)' ela=\s*(\d+)/i) {
 $ela{$2} += $3;
 $sum_ela += $3;
 }
 elsif (/^$action #(\d+):c=(\d+),e=(\d+)/i) {
 $ela{"total CPU"} += $2;
 $r = $3;
 }
 if (!defined $cid) {
 $cid = $1;
 } else {
 die "can't mix data across cursor ids $cid and $1" if $1 != $cid;
 }
}
$ela{"unaccounted-for"} = $r - ($ela{"total CPU"} + $sum_ela);
printf "%9s %6s %-40s\n", "Duration", "Pct", "Oracle kernel event";
printf "%8s- %5s- %-40s\n", "-"x8, "-"x5, "-"x40;
printf "%8.2fs %5.1f%% %-40s\n", $ela{$_}/100, $ela{$_}/$r*100, $_ for sort { $ela{$b}
<=> $ela{$a} } keys %ela;
printf "%8s- %5s- %-40s\n", "-"x8, "-"x5, "-"x40;
printf "%8.2fs %5.1f%% %-40s\n", $r/100, 100, "Total response time";

Note the row labeled "unaccounted-for" in our resource profile. Consider how it was computed. The total elapsed
time—in fact the response time—for the fetch call is simply the value of e for the fetch. The raw trace data account
for this response time in two ways:

� The total CPU time component of the fetch call's response time is recorded as the c statistic on the FETCH line
itself.

� The system-call time components of the response time are recorded as ela statistics on all of the WAIT lines
associated with the fetch.

The "unaccounted-for" duration is thus the leftover amount ∆ (delta) expressed in the following formula:

How Oracle response time accounting has evolved since Oracle Version 6 is an interesting story. In Version 6,
Oracle's SQL trace facility printed database call response times (e) and CPU consumptions (c) to the trace file, but
that was the only response time data that the Oracle kernel published. The first Oracle response time model was
simple. It was "response time equals CPU consumption plus some unidentified other stuff," or:

Page 2 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-5-SECT-4

e = c + ∆

This model is effective when ∆ is small, but it is not reliable for diagnosing many types of response time problems
that occur when ∆ is large. In the Version 6 days, most analysts were taught to assume that large values of ∆ were
attributable to time consumed by operating system read calls. This assumption is often incorrect (as was the case in
the resource profile shown previously), but it has helped analysts solve many application performance problems. One
reason for the model's success in spite of its over-simplicity is that so many Oracle application problems are caused by
fetch calls that access the database buffer cache excessively. These cases create small ∆ values for which the e = c + ∆
model works just fine.

Oracle kernel developers were among the first to encounter the most serious inadequacies of the model. The range of
potential root causes for large ∆ values was so large that some important high-end response time problems simply
could not be solved without more operational data. Oracle's extended SQL trace data, introduced to the general market
in 1992 with release 7.0.12, is an elegant solution to the problem. Extended SQL trace data include those WAIT lines
that tell us how much time the Oracle kernel spends "waiting" for the execution of key events. The new, significantly
improved response time model made possible by the new extended SQL trace feature of Oracle release 7.0.12 is the
one that we use today:

As it happens, extended SQL trace data provide significantly more diagnostic power than most analysts have ever
believed. Of the few analysts who even realize that the gap ∆ exists, some deem the existence of the gap a deficiency
of extended SQL trace data that renders the data unreliable. On the contrary, as you shall see, there is good
information buried in the value of ∆. There are several contributory causes of non-zero ∆ values, as I explain in
Chapter 7. Understanding these causes helps you exploit the full diagnostic power of Oracle's extended SQL trace
data.

Page 3 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 5. Interpreting Extended SQL Trace Data

5.5 Walking the Clock

As you try to extract response time information from raw trace data, you'll need to be able to interpret the time
sequence of events using a process we call "walking the clock." Walking the clock requires a few pieces of knowledge
about how the Oracle kernel manages time data:

� The value of a line's tim field is the approximate time at which the action represented by that line completed.

� A database call's e field value contains the total elapsed time consumed by that action. This value includes
both the CPU time consumed by the action (the value of the c field) and the time consumed by events executed
during the course of the action (the sum of the appropriate ela field values).

� Recursive SQL causes double-counting. That is, the value of a database call's e field when dep=n + 1 is already
included in the subsequent e value for which dep=n.

� Don't expect perfection from clock walks. Off-by-one errors are common in Oracle8i trace files. Errors of
seemingly much greater magnitude are common in Oracle9i trace files; however, with the microsecond timing
resolution of Oracle9i, the errors are smaller than they look.

5.5.1 Oracle Release 8 and Prior

Here is an example of some trace data that will demonstrate how to walk the clock through trace files emitted by
Oracle8i and prior kernels:

EXEC #13:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=2,og=3,tim=198360834
FETCH #13:c=0,e=0,p=0,cr=3,cu=0,mis=0,r=1,dep=2,og=3,tim=198360834
EXEC #12:c=2,e=4,p=0,cr=27,cu=0,mis=0,r=0,dep=1,og=4,tim=198360837
FETCH #12:c=2,e=10,p=10,cr=19,cu=4,mis=0,r=1,dep=1,og=4,tim=198360847

Table 5-7 shows the associated clock-walk.

Occasionally, there'll be an off-by-one error such as the one that distinguishes the predicted tim value in line 3 from
the actual tim value found there. Don't let a ±1-cs error disturb you. Oracle8i kernels round their time values to the
nearest centisecond, so what appeared to be the addition of ...834 + 4 might actually have been the addition
of ...833.7048 + 3.5827, which after rounding would have produced the observed value of ...837.

The following Oracle8i trace file excerpt contains database calls and wait events:

PARSE #494:c=4,e=5,p=11,cr=88,cu=0,mis=1,r=0,dep=2,og=0,tim=3864619462

Table 5-7. Walking the tim clock for Oracle8i database calls

Line (k) e Predicted timk = timk-1+ ek
 Actual timk

 Error

1 0 198360834

2 0 198360834 + 0 = 198360834 198360834 0

3 4 198360834 + 4 = 198360838 198360837 1

4 10 198360837 + 10 = 198360847 198360847 0

Page 1 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

WAIT #494: nam='latch free' ela= 2 p1=-2147434220 p2=95 p3=0
WAIT #494: nam='latch free' ela= 2 p1=-2147434220 p2=95 p3=1
EXEC #494:c=0,e=4,p=0,cr=0,cu=0,mis=0,r=0,dep=2,og=4,tim=3864619466
FETCH #494:c=0,e=0,p=0,cr=2,cu=0,mis=0,r=1,dep=2,og=4,tim=3864619466

Table 5-8 shows the clock-walk of these lines. In the walk for this excerpt, notice that I've assigned k labels only to
database call lines (not the WAIT lines). It's okay to track the anticipated progress of the tim clock during wait events,
but remember that the e value in a database call already includes the time recorded in ela values for wait events
motivated by the database call. Therefore, the basis for predicting a timk value for a database call is always the timk-1

from the prior database call line.

Now for a tricky excerpt to make sure that you're paying attention. Can you explain why the actual tim value of
198360796 in the EXEC #8 line is so different from the value you might have expected, 198360795 + 19 =
198360814?

EXEC #9:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=2,og=3,tim=198360795
FETCH #9:c=0,e=0,p=0,cr=3,cu=0,mis=0,r=1,dep=2,og=3,tim=198360795
EXEC #9:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=2,og=3,tim=198360795
FETCH #9:c=0,e=0,p=0,cr=3,cu=0,mis=0,r=1,dep=2,og=3,tim=198360795
EXEC #8:c=4,e=19,p=16,cr=162,cu=0,mis=0,r=0,dep=1,og=4,tim=198360796
FETCH #8:c=0,e=5,p=4,cr=4,cu=0,mis=0,r=1,dep=1,og=4,tim=198360801
FETCH #8:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=0,tim=198360801
FETCH #7:c=0,e=0,p=0,cr=2,cu=0,mis=0,r=1,dep=1,og=4,tim=198360801
EXEC #8:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=198360801

The answer is that the EXEC #8 database call is the dep=1 recursive parent of each of the dep=2 actions shown here on
cursor #9. Therefore, the e=19 field contains all of the cursor #9 e values shown here plus some other time-consuming
activities that are not shown here. The EXEC #8 action probably began very near tim 198360796 - 19 = 198369777.
Between tim values ...777 and ...796, lots of dep=2 actions took place, each consuming time while the tim clock
advanced. But remember, these dep=2 actions all took place during the single EXEC #8 action.

5.5.2 Oracle Release 9

The microsecond output resolution of time statistics in Oracle9i is a helpful enhancement. The first thing you'll notice
about SQL trace data when you upgrade to Oracle9i is that the microsecond resolution feature provides real data for
cases in which Oracle8i would have emitted lots of zero values.

The new resolution has allowed us to see a little more clearly into the Oracle kernel's behavior. This section describes
a few cases in which we've been able to learn more as a result of the Oracle kernel's improved output resolution.

Table 5-8. Walking the tim clock for Oracle8i database calls and wait events

Line (k) e Predicted timk = timk-1 + ek
 Actual timk

 Error

1 5 3864619462

 2 3864619462 + 2 = 3864619464

 2 3864619464 + 2 = 3864619466

2 4 3864619462 + 4 = 3864619466 3864619466 0

3 0 3864619466 + 0 = 3864619466 3864619466 0

However, do not hesitate to use extended SQL trace data with Version 8 or even Version
7 systems. The optimization method described in this book does work reliably for
diagnostic data expressed in centiseconds. In the vast majority of real-life performance
improvement projects, the microsecond output resolution of Oracle9i is merely a luxury.

Page 2 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Walking the clock in Oracle9i trace files requires a little more patience. The first difference you'll notice is that the
numbers are all so much larger that it's quite a bit more difficult to do the walk in your head. For example:

EXEC #1:c=0,e=1863,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1017039275956134
FETCH #1:c=0,e=2566,p=0,cr=23,cu=0,mis=0,r=1,dep=1,og=4,tim=1017039275958821
FETCH #1:c=0,e=50,p=0,cr=0,cu=0,mis=0,r=1,dep=1,og=4,tim=1017039275959013
FETCH #1:c=0,e=34,p=0,cr=0,cu=0,mis=0,r=1,dep=1,og=4,tim=1017039275959155
FETCH #1:c=0,e=34,p=0,cr=0,cu=0,mis=0,r=1,dep=1,og=4,tim=1017039275959293
FETCH #1:c=0,e=35,p=0,cr=0,cu=0,mis=0,r=1,dep=1,og=4,tim=1017039275959433

The next thing that you might notice is that the numbers don't add up. Observe the large numbers that show up in the
"Error" column of Table 5-9.

The sensation produced by these large error values is quite horrific until you realize that the errors are expressed in
microseconds. Small time gap errors like this have always been present in Oracle diagnostic data. They were usually
invisible when measured with centisecond resolution. When we view microsecond timing data, the impact of another
type of response time measurement error becomes apparent: the calls to gettimeofday and getrusage consume elapsed
time that the calls themselves do not measure (see the Chapter 7 discussion of the measurement intrusion effect).

In Oracle9i trace files, you might notice the "disturbing" fact that not all trace lines are listed in ascending time order.
Specifically, the tim value for a PARSING IN CURSOR section always occurs in the future relative to the tim value of the
database call immediately following the PARSING IN CURSOR section. For example:

PARSING IN CURSOR #1 len=32 dep=0 uid=5 oct=42 lid=5 tim=1033050389206593
hv=1197935484 ad='50f93654'
alter session set sql_trace=true
END OF STMT
EXEC #1:c=0,e=33,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=1033050389204497

You can confirm why this occurs by tracing the wait events of an Oracle kernel process with strace or a similar tool.
The Oracle kernel finishes processing the EXEC call before it begins computing the information for the PARSING IN
CURSOR section. But then the kernel prints the PARSING IN CURSOR section before it prints the EXEC line. Hence, the
times appear out of order.

You'll find that the Oracle8i kernel does things in this order as well. You just didn't notice, because the centisecond
statistics emitted by Oracle8i in most cases concealed the true time sequence information from you. With the
microsecond statistics emitted by Oracle9i, the order becomes apparent.

5.5.3 Clock Walk Formulas

After having seen a few clock-walk examples, you have probably caught onto the formula. As long as you remember
not to double-count in the presence of different levels of recursive database calls, then the values of the tim and e
fields bear the following relationship:

Table 5-9. Walking the tim clock for Oracle9i database calls. Notice the apparently large error values, but
remember that the errors here are actually quite small because they're expressed in microseconds

Line (k) e Predicted timk = timk-1 + ek
 Actual timk

 Error

1 1863 ...956134

2 2566 ...956134 + 2566 = ...958700 ...958821 -121

3 50 ...958821 + 50 = ...958871 ...959013 -142

4 34 ...959013 + 34 = ...959047 ...959155 -108

5 34 ...959155 + 34 = ...959189 ...959293 -104

6 35 ...959293 + 35 = ...959328 ...959433 -105

Page 3 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-5-SECT-5

timk+1 timk + ek+1

That is, the following line's tim field value is approximately this line's tim field value plus the following line's e field
value. Equivalently, you can write:

timk timk+1 - ek+1

That is, the current line's tim field value approximately equals the following line's tim field value minus the following
line's e field value.

Of course, a WAIT line has no tim field, so if you want to estimate what a WAIT line's tim value would be, you have to
estimate it by walking the clock forward from the most recently available tim value, using the relationship:

timk+1 timk + elak+1

These formulas will come in handy when you learn how to correct for data collection error in Chapter 7.

Page 4 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 5. Interpreting Extended SQL Trace Data

5.6 Forward Attribution

When you identify a time-consuming wait event in an Oracle extended SQL trace file, your next task will be to
determine which application action you might modify to reduce the time consumption. Doing this with extended SQL
trace data is straightforward. You should attribute each WAIT #n duration to the first database call for cursor #n that
follows the WAIT line in the trace file. I call this method forward attribution. Forward attribution helps you accurately
identify which application SQL is responsible for motivating the wait time. Perhaps remarkably, forward attribution
works both for events that are executed within database calls and for events that are executed between database calls.

5.6.1 Forward Attribution for Within-Call Events

For events executed within database calls, the reason for forward attribution is easy to understand. Because lines are
written to the trace file as their corresponding actions complete, the wait events executed by a given database call
appear in the trace stream before the call's trace file line. The following excerpt (snipped from Example 5-3) shows
how the Oracle kernel emits within-call event lines:

=
PARSING IN CURSOR #4 len=132 dep=1 uid=0 oct=3 lid=0 tim=1033064137929238
hv=3111103299 ad='517ba4d8'
select /*+ index(idl_ub1$ i_idl_ub11) +*/ piece#,length,piece from idl_ub1$ where
obj#=:1 and part=:2 and version=:3 order by piece#
END OF STMT
PARSE #4:c=0,e=306,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1033064137929139
EXEC #4:c=0,e=146,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1033064137931262
[1]WAIT #4: nam='db file sequential read' ela= 13060 p1=1 p2=53903 p3=1
[2]WAIT #4: nam='db file sequential read' ela= 6978 p1=1 p2=4726 p3=1
[3]FETCH #4:c=0,e=21340,p=2,cr=3,cu=0,mis=0,r=0,dep=1,og=4,tim=1033064137953092

In this example, the db file sequential read events on lines [1] and [2] were executed within the context of the FETCH
depicted on line [3].

5.6.2 Forward Attribution for Between-Call Events

For events executed between database calls, the reason that forward attribution works is more subtle. The following
Oracle8i example (snipped from Example 5-4) helps to illustrate the issue. Because of a database driver deficiency,
this application actually submitted each parse call to the database two times.[2] Notice the identical PARSING IN
CURSOR sections separated by a to/from SQL*Net message pair:

[2] Lots of drivers provide an option to behave this way. The extra parse is used to produce a "describe" of the SQL being parsed, so that
the driver can produce more informative error messages for the developer. Even the Perl DBI behaves this way by default. In Perl, you
can deactivate this behavior by specifying the ora_check_sql=>0 attribute in prepare calls.

=
PARSING IN CURSOR #9 len=360 dep=0 uid=26 oct=2 lid=26 tim=1716466757 hv=2475520707
ad='d4c55480'
INSERT INTO STAGING_AREA (TMSP_LAST_UPDT, OBJECT_RESULT, USER_LAST_UPDT, DOC_OBJ_ID,
TRADE_NAME_ID, LANGUAGE_CODE) values(TO_DATE('11/05/2001 16:39:06', 'MM/DD/YYYY HH24:
MI:SS'), 'if (exists (stdphrase ("PCP_MAV_1")) , langconv ("Incompatibility
With Other Materials") + ": " , log_omission ("Materials to Avoid: "))', 'sa',
222, 54213, 'NO_LANG')
END OF STMT
PARSE #9:c=0,e=0,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=4,tim=1716466757
[1]WAIT #9: nam='SQL*Net message to client' ela= 0 p1=1413697536 p2=1 p3=0
[2]WAIT #9: nam='SQL*Net message from client' ela= 3 p1=1413697536 p2=1 p3=0
=
PARSING IN CURSOR #9 len=360 dep=0 uid=26 oct=2 lid=26 tim=1716466760 hv=2475520707
ad='d4c55480'

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-5-SECT-6

INSERT INTO STAGING_AREA (TMSP_LAST_UPDT, OBJECT_RESULT, USER_LAST_UPDT, DOC_OBJ_ID,
TRADE_NAME_ID, LANGUAGE_CODE) values(TO_DATE('11/05/2001 16:39:06', 'MM/DD/YYYY HH24:
MI:SS'), 'if (exists (stdphrase ("PCP_MAV_1")) , langconv ("Incompatibility
With Other Materials") + ": " , log_omission ("Materials to Avoid: "))', 'sa',
222, 54213, 'NO_LANG')
END OF STMT
[3]PARSE #9:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=1716466760

Even though the parse calls were routinely inexpensive (note the two e=0 durations highlighted in the example), the
response time for the overall user action suffered brutally from the tremendous number of unnecessary SQL*Net
message from client executions, which consumed an average of over 0.027 seconds per call. The overall impact to
response time was several minutes on a user action that should have consumed less than 10 seconds in total (see
Section 12.3). To eliminate the SQL*Net event executions shown on lines [1] and [2], you can eliminate the parse call
depicted on line [3] that follows it. In general, the database call that has "caused" a between-call event is the database
call whose trace file line follows the WAIT.

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 5. Interpreting Extended SQL Trace Data

5.7 Detailed Trace File Walk-Through

At the beginning of this chapter, I promised you a detailed walk-through of the trace file displayed in Example 5-2.
Now it is time for the full tour.

Each SQL trace file begins with a preamble that describes information about the file such as the file name, the Oracle
release, and various elements describing the system environment and the session being traced. Here is the preamble
from Example 5-2:

/u01/oradata/admin/V901/udump/ora_9178.trc
Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production
With the Partitioning option
JServer Release 9.0.1.0.0 - Production
ORACLE_HOME = /u01/oradata/app/9.0.1
System name: Linux
Node name: research
Release: 2.4.4-4GB
Version: #1 Fri May 18 14:11:12 GMT 2001
Machine: i686
Instance name: V901
Redo thread mounted by this instance: 1
Oracle process number: 9
Unix process pid: 9178, image: oracle@research (TNS V1-V3)

After the preamble, the Oracle kernel emitted information that identifies the time and the session at which the first
trace line was emitted:

*** SESSION ID:(7.6692) 2002-12-03 10:07:40.051

The next line reveals information about the module and action names that were set with DBMS_APPLICATION_INFO by
the client program, which in my case was SQL*Plus:

APPNAME mod='SQL*Plus' mh=3669949024 act='' ah=4029777240

The first actual action that the kernel recorded in the trace file was the execution of the ALTER SESSION command.
The kernel did not emit information about the parse of the ALTER SESSION command, because tracing wasn't enabled
until after the parse had completed. Conveniently, the Oracle kernel emitted a section describing the cursor being
acted upon by the execute call, before it emitted the information about the EXEC call itself. The execute call did very
little work. The e=1 string indicates that the call consumed only 1 microsecond (1 µs = 0.000 001 seconds) of elapsed
time.

=
PARSING IN CURSOR #1 len=69 dep=0 uid=5 oct=42 lid=5 tim=1038931660052098
hv=1509700594 ad='50d6d560'
alter session set events '10046 trace name context forever, level 12'
END OF STMT
EXEC #1:c=0,e=1,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=1038931660051673

When the execution of the ALTER SESSION command completed, the Oracle kernel shipped the result back to the
client program by writing to a socket controlled by the SQL*Net driver. The elapsed duration of this write call was 5
µs.

WAIT #1: nam='SQL*Net message to client' ela= 5 p1=1650815232 p2=1 p3=0

Upon completing the write call, the Oracle kernel issued a read upon the same socket (note that the p1 values for both

Page 1 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

the write and the read are the same), and the kernel awaited the next request from its client program. Approximately
1,262 µs after issuing the read call, the read call returned with another request for the kernel.

WAIT #1: nam='SQL*Net message from client' ela= 1262 p1=1650815232 p2=1 p3=0

The request received by the read of the socket was in fact the instruction to parse my "Hello, world" query. Note that
before printing the PARSE statistics, the kernel helpfully emitted a section beginning with a sequence of "=" characters
and ending with the string END OF STMT that describes the cursor being parsed. The parse call itself consumed 214 µs
of elapsed time.

=
PARSING IN CURSOR #1 len=51 dep=0 uid=5 oct=3 lid=5 tim=1038931660054075
hv=1716247018 ad='50c551f8'
select 'Hello, world; today is '||sysdate from dual
END OF STMT
PARSE #1:c=0,e=214,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=1038931660054053

The next database call is EXEC, which denotes the execution of the cursor that the kernel had parsed. Immediately
preceding the EXEC line is an empty BINDS section, which indicates that although the SQL*Plus program requested a
bind operation, there was nothing in the statement for the kernel to bind. Total elapsed time for the execution: 124 µs.

BINDS #1:
EXEC #1:c=0,e=124,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=1038931660054311

At the conclusion of the EXEC call, the kernel shipped a result back to the client program (that is, the SQL*Plus
program). The write to the socket consumed 5 µs of elapsed time.

WAIT #1: nam='SQL*Net message to client' ela= 5 p1=1650815232 p2=1 p3=0

Immediately following the write to the socket, the kernel's next action was a fetch operation. The FETCH statistics
show an elapsed duration of 177 µs to return one row (r=1), which required three reads of the database buffer cache,
one in consistent mode (cr=1) and two in current mode (cu=2).

FETCH #1:c=0,e=177,p=0,cr=1,cu=2,mis=0,r=1,dep=0,og=4,tim=1038931660054596

The next database call recorded in the trace file is another fetch, which took place after a 499-µs read from the
SQL*Net socket. The fetch returned no rows and consumed only 2 µs of elapsed time.

WAIT #1: nam='SQL*Net message from client' ela= 499 p1=1650815232 p2=1 p3=0
FETCH #1:c=0,e=2,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0,tim=1038931660055374

Next, the kernel shipped a result back to the client in a socket write operation that consumed 4 µs of elapsed time.

WAIT #1: nam='SQL*Net message to client' ela= 4 p1=1650815232 p2=1 p3=0

After shipping back the fetch result to the client, the kernel sat idle awaiting its next request. It didn't wait long. Only
1,261 µs after initiating the SQL*Net socket read, the read call was complete.

WAIT #1: nam='SQL*Net message from client' ela= 1261 p1=1650815232 p2=1 p3=0

The instruction that the read call delivered to the kernel resulted in the closing of the "Hello, world" cursor and finally
the end of the read-only transaction. Upon cursor close, the kernel helpfully emitted a STAT line that indicates the
execution plan that the query optimizer had chosen for executing my query. In this case, my query had motivated a
full-table scan of DUAL.

STAT #1 id=1 cnt=1 pid=0 pos=0 obj=221 op='TABLE ACCESS FULL DUAL '
XCTEND rlbk=0, rd_only=1

Page 2 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-5-SECT-7

As you can see, the Oracle kernel did quite a bit of work to fulfill the requirements of even my trivial SQL*Plus
session. For performance problems on real-life systems, you can imagine the significant leap in trace file complexity.
But even this simple example shows some of the actions that occur within database calls and some of the actions that
occur between database calls. These actions are the building blocks that comprise the much larger and more complex
trace files that you'll encounter in real life.

Page 3 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 5. Interpreting Extended SQL Trace Data

5.8 Exercises

1. In Example 5-8, which WAIT lines refer to wait events made within database calls, and which refer to wait
events made between database calls? Describe how each c, e, and ela statistic shown fits into the relationship e

 c + Σela.

Example 5-8. Extended SQL trace data file excerpt

...
Many WAIT #1 lines are omitted for clarity
...
=
PARSING IN CURSOR #1 len=253 dep=0 uid=18 oct=3 lid=18 tim=1024427939516845 hv=1223272015
ad='80cbc5b8'
...
SQL text is omitted for clarity
...
END OF STMT
PARSE #1:c=60000,e=55973,p=3,cr=44,cu=6,mis=1,r=0,dep=0,og=4,tim=1024427939516823
EXEC #1:c=0,e=140,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=1024427939517471
WAIT #1: nam='SQL*Net message to client' ela= 15 p1=1650815232 p2=1 p3=0
WAIT #1: nam='db file sequential read' ela= 678 p1=7 p2=11146 p3=1
WAIT #1: nam='db file sequential read' ela= 815 p1=7 p2=11274 p3=1
FETCH #1:c=200000,e=259460,p=2,cr=12,cu=24,mis=0,r=1,dep=0,og=4,tim=1024427939777318
WAIT #1: nam='SQL*Net message from client' ela= 1450 p1=1650815232 p2=1 p3=0
WAIT #1: nam='SQL*Net message to client' ela= 5 p1=1650815232 p2=1 p3=0
FETCH #1:c=0,e=339,p=0,cr=0,cu=0,mis=0,r=12,dep=0,og=4,tim=1024427939779621
WAIT #1: nam='SQL*Net message from client' ela= 7828 p1=1650815232 p2=1 p3=0
...
STAT lines are omitted for clarity

...
=
PARSING IN CURSOR #1 len=55 dep=0 uid=18 oct=42 lid=18 tim=1024427939789693 hv=3381932903
ad='80c9e33c'
alter session set events '10046 trace name context off'
END OF STMT
PARSE #1:c=0,e=810,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=4,tim=1024427939789677

2. For Example 5-9, construct a graph like the one shown in Figure 5-3 that illustrates the recursive relationships
among database calls. Compute the contribution to e of each database call. What type of application would
perform the actions shown here?

Example 5-9. SQL trace file exhibiting recursive SQL behavior (level-1 output is shown to reduce clutter for
the exercise)

/u01/oradata/admin/V901/udump/ora_23317_recursive.trc

*** TRACE DUMP CONTINUED FROM FILE ***

Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production
With the Partitioning option
JServer Release 9.0.1.0.0 - Production
ORACLE_HOME = /u01/oradata/app/9.0.1
System name: Linux
Node name: research
Release: 2.4.4-4GB
Version: #1 Fri May 18 14:11:12 GMT 2001
Machine: i686
Instance name: V901
Redo thread mounted by this instance: 1

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-5-SECT-8

Oracle process number: 9
Unix process pid: 23317, image: oracle@research (TNS V1-V3)

*** 2003-05-18 11:14:59.469
*** SESSION ID:(8.1578) 2003-05-18 11:14:59.469
APPNAME mod='SQL*Plus' mh=3669949024 act='' ah=4029777240
=
PARSING IN CURSOR #1 len=68 dep=0 uid=5 oct=42 lid=5 tim=1053274499469370 hv=1635464953
ad='51f65c00'
alter session set events '10046 trace name context forever, level 1'
END OF STMT
EXEC #1:c=0,e=1,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=3,tim=1053274499469133
=
PARSING IN CURSOR #2 len=175 dep=1 uid=0 oct=3 lid=0 tim=1053274499471797 hv=1491008679
ad='52107fa8'
select u.name,o.name, t.update$, t.insert$, t.delete$, t.enabled from obj$ o,user$
u,trigger$ t where t.baseobject=:1 and t.obj#=o.obj# and o.owner#=u.user# order by o.
obj#
END OF STMT
PARSE #2:c=0,e=91,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=3,tim=1053274499471765
EXEC #2:c=0,e=160,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=3,tim=1053274499483293
FETCH #2:c=0,e=32228,p=1,cr=8,cu=0,mis=0,r=1,dep=1,og=3,tim=1053274499515571
FETCH #2:c=0,e=20,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=3,tim=1053274499515717
=
PARSING IN CURSOR #1 len=44 dep=0 uid=5 oct=2 lid=5 tim=1053274499516502 hv=2583883
ad='51f224f8'
insert into t values (1001, rpad(1001,1000))
END OF STMT
PARSE #1:c=0,e=45515,p=1,cr=8,cu=0,mis=1,r=0,dep=0,og=3,tim=1053274499516473
=
PARSING IN CURSOR #2 len=22 dep=1 uid=5 oct=3 lid=5 tim=1053274499535321 hv=4140187373
ad='521444c8'
SELECT count(*) from t
END OF STMT
PARSE #2:c=0,e=1003,p=0,cr=0,cu=0,mis=1,r=0,dep=1,og=3,tim=1053274499535287
EXEC #2:c=0,e=115,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=3,tim=1053274499535550
*** 2003-05-18 11:15:13.212
FETCH #2:
c=3730000,e=13676722,p=127292,cr=127894,cu=260,mis=0,r=1,dep=1,og=3,tim=1053274513212315
EXEC #1:
c=3730000,e=13695999,p=127293,cr=127897,cu=264,mis=0,r=1,dep=0,og=3,tim=1053274513212610
=
PARSING IN CURSOR #4 len=52 dep=0 uid=5 oct=47 lid=5 tim=1053274513254792 hv=1697159799
ad='51f59e44'
BEGIN DBMS_OUTPUT.GET_LINES(:LINES, :NUMLINES); END;
END OF STMT
PARSE #4:c=0,e=149,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=3,tim=1053274513254759
EXEC #4:c=0,e=38900,p=0,cr=0,cu=0,mis=0,r=1,dep=0,og=3,tim=1053274513293822
STAT #2 id=1 cnt=1 pid=0 pos=0 obj=0 op='SORT AGGREGATE '
STAT #2 id=2 cnt=1 pid=1 pos=1 obj=31159 op='TABLE ACCESS FULL T '
XCTEND rlbk=0, rd_only=0

3. Trace a DDL command, such as DROP TABLE. How many dictionary operations does the Oracle kernel
perform implicitly for you when you drop a table? How does the number of operations change if the table
being dropped has indexes? What if there are histograms in place on columns? What about constraints? What
if the table is involved in a materialized view, or is subject to a security policy?

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part II: Reference

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-6

Chapter 6. Collecting Extended SQL Trace Data

The process for collecting extended SQL trace data is somewhat of a moving target. For a while, Oracle appeared
committed to the excruciatingly inefficient Oracle Trace mechanism. However, the Oracle9i release 2 documentation
states flatly that Oracle trace will be deprecated in favor of SQL trace (presumably extended SQL trace) [Oracle
(2002)]. Oracle describes the use of SQL trace in its standard documentation, but if you want to use extended SQL
trace, you have to work to find the information. This chapter helps to solve that problem for Oracle releases 7 through
9. The architects of the Oracle kernel understand the value of response time data that can be attributed accurately to
end-user business actions. Look for Oracle release 10 to contain several features that will simplify your data collection
challenges.

Note that when you generate SQL trace data, you are recording data about your
application in an ASCII file. Each SQL trace file contains application SQL text. Many
SQL trace files also contain application data. The use of this information is probably
subject to strict rules within your company. You must ensure that your use of SQL trace
files does not breach confidentiality or leak sensitive data to those who should not see it.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 6. Collecting Extended SQL Trace Data

6.1 Understanding Your Application

As you learned in Chapter 3, you want to be able to trace exactly the actions motivated by a carefully specified user or
batch program for a carefully specified time interval. As you'll see later in this chapter, the Oracle release 7, 8, and 9
kernels give you the ability to activate and deactivate extended SQL tracing only at the Oracle session level. Being
able to control tracing only at the session level creates varying degrees of hardship for the data collection process,
depending upon the architecture of your application. Before you can trace your application, unfortunately, you must
understand its architecture.

Let's begin with some definitions. A user action is a functional unit of work that some human being executes. A user
action is the thing whose performance some user finds interesting (and therefore you find it interesting too). This
action requires the execution of code that may exist on any or all of several architectural tiers (such as a client's
browser, an application server, a database server, or various network devices).

The database server host is the tier on which this book focuses, because most performance problems can be diagnosed
most efficiently by observing instrumentation produced by this tier. A user action may involve zero or many
processes (or even threads) on the database server host. A process is an operating system object that is an instantiation
of some executable program. You can identify an OS process by its unique OS process ID (PID), and you can monitor
it with operating system tools. For example, the following Linux ps (report process status) output shows four
processes (8233, 8325, 8326, and 8327) which are using only three different programs (ksh, ps, and two copies of t):

$ ps
 PID TTY TIME CMD
 8233 pts/4 00:00:00 ksh
 8325 pts/4 00:00:00 t
 8326 pts/4 00:00:00 t
 8327 pts/4 00:00:00 ps

You will be interested primarily in two types of OS processes on your database server host. First and foremost, you
will be interested in the Oracle server processes that share memory, access your Oracle database files, and do most of
the work on most Oracle systems. These processes usually contain the string "oracle" in their names. The following
Linux command produces a listing of all processes that contain the string "oracle" in the process table, but not the
string "grep":

$ ps -ef | grep oracle | grep -v grep
oracle 756 1 0 Feb04 ? 00:00:19 ora_pmon_V816
oracle 758 1 0 Feb04 ? 00:00:04 ora_dbw0_V816
oracle 760 1 0 Feb04 ? 00:00:03 ora_lgwr_V816
oracle 762 1 0 Feb04 ? 00:00:43 ora_ckpt_V816
oracle 764 1 0 Feb04 ? 00:00:01 ora_smon_V816
oracle 766 1 0 Feb04 ? 00:00:00 ora_reco_V816
oracle 8834 8833 0 16:12 ? 00:00:00 oracleV816 (DESCRIPTION=(LO
oracle 8859 8858 0 16:13 ? 00:00:00 oracleV816 (DESCRIPTION=(LO

Note that this command has also displayed all of my system's Oracle background processes as well (because they're
owned by the user called oracle).

You might hear server processes called many names, including:

The most difficult part of diagnosing performance problems in Oracle release 7, 8, or 9
applications is the collection of properly scoped diagnostic data. Once you collect
properly scoped data, the diagnosis process runs very smoothly.

Page 1 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Server processes
Shadow processes
Kernel processes
Foreground processes

The second interesting type of OS process that exists on your server host is any client process that makes database
connections. For example, it is common to run database call-intensive application programs such as reports or batch
uploads on the database server host itself. This configuration decision makes excellent sense for any client program
that consumes most of its total elapsed time waiting for database calls. In such a case, the cost of executing the client
program's CPU instructions on the server more than compensates for the cost of flooding a network with masses of
SQL*Net chit-chat between the client and oracle server processes.

Examples of Oracle application client programs include:

sqlplus (SQL*Plus)
f60run (Oracle*Forms)
FNDLIBR (Oracle Financials Concurrent Manager program)
PYUGEN (An Oracle Human Resources program)

An Oracle session (or, in this book, simply a session) is a specific sequence of database calls that flow through a
connection between a user process and an Oracle instance. You can identify a session by its unique identifier, the
concatenation of V$SESSION.SID and V$SESSION.SERIAL#. For example, the following SQL*Plus output shows nine
Oracle sessions:

SQL> select sid, serial#, username, type from v$session;

 SID SERIAL# USERNAME TYPE
---------- ---------- ------------------------------ ----------
 1 1 BACKGROUND
 2 1 BACKGROUND
 3 1 BACKGROUND
 4 1 BACKGROUND
 5 1 BACKGROUND
 6 1 BACKGROUND
 7 13 SYSTEM USER
 8 11 SYSTEM USER
 9 337 CVM USER

9 rows selected.

Data collection is simple when a user action uses exactly one client process, one Oracle server process, and one
Oracle session. Fortunately, this is what happens in many performance problem situations, such as long-running
reports and batch jobs. Complexity in data collection grows when a user action involves the participation of more
Oracle processes or more Oracle sessions. For example:

Oracle Multithreaded Server (MTS)

In an MTS configuration, several client processes share a smaller number of Oracle server processes. This
configuration reduces the number of process instantiations required to run an application with a large number
of constantly connected but mostly idle users.

Connection pooling

In a connection pooling configuration, a single OS process (called a service) on the middle tier creates a single
Oracle connection and establishes a single Oracle session on a single Oracle server process. The service then
makes database calls on behalf of many users within its single session. This type of configuration permits even
greater scalability for large user counts than MTS configurations.

My colleagues and I see mind-bogglingly complex combinations of these technologies and more in the field,

Page 2 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-6-SECT-1

especially in environments where a single user action requires work from services that are distributed across
databases. As I mentioned previously, collecting properly scoped diagnostic data is usually the most difficult part of
problem diagnosis methods today. The good news is that once you figure out how to do it for a given architecture,
executing further data collection tasks for that architecture becomes much easier. Furthermore, I expect that the
architectural changes planned for Oracle release 10 simplify the process of collecting properly scoped data for an
individual user action.

The key to successful extended SQL trace data collection is to understand how to identify the right Oracle sessions.
For connection pooling architectures, the key is to identify which database calls and wait events map to the user action
that you're diagnosing.

Page 3 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 6. Collecting Extended SQL Trace Data

6.2 Activating Extended SQL Trace

The first secret to the syntax of Oracle's extended SQL trace mechanism lies in the file
$ORACLE_HOME/rdbms/mesg/oraus.msg. It's the error message file for the Oracle kernel. If you search for the first
occurrence of the string "10000" that appears at the beginning of a line in the file (e.g., by issuing the
command /^10000 in vi), you'll find yourself in the midst of the following file content:

/ Pseudo-error debugging events:
/ Error codes 10000 .. 10999 are reserved for debug event codes that are
/ not really errors.
/
// NLS_DO_NOT_TRANSLATE [10000,10999] - Tag to indicate messages should
// not be translated.
10000, 00000, "controlfile debug event, name 'control_file'"
// *Cause:
// *Action:

Oracle kernel developers have created debugging events with codes in the range 10000 through 10999 to assist them in
testing and debugging the kernel.

The one-line descriptions of these debug event codes are quite educational. In them you can discover the existence of
debug events that enable Oracle kernel developers to simulate events like memory errors or various types of file
corruption, change the behavior of components like the query optimizer, or trace internal kernel operations like latch
acquisitions. Debugging events that can assist you in your role as performance analyst include:

10032, 00000, "sort statistics (SOR*)"
10033, 00000, "sort run information (SRD*/SRS*)"
10053, 00000, "CBO Enable optimizer trace"
10079, 00000, "trace data sent/received via SQL*Net"
10104, 00000, "dump hash join statistics to trace file"
10241, 00000, "remote SQL execution tracing/validation"

Amid the list of over 400 debugging events is the one to activate extended SQL trace:

10046, 00000, "enable SQL statement timing"

This inconspicuous little capability, buried about 16,000 lines deep within an undocumented file, is one of the heroes
of this book. It is the source of your ability to obtain a full account of how an Oracle application program consumes
your users' response times.

Oracle Corporation does not distribute oraus.msg on Microsoft Windows ports. To view
the file, you'll need to find it on a non-Windows distribution.

Prior to Oracle release 10, all pseudo-error debugging events are officially unsupported,
unless you're acting specifically under the direction of Oracle Support. Later in this
chapter, I describe the DBMS_SUPPORT.START_TRACE_IN_SESSION package, which is a
fully supported way to use event 10046.

Page 1 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

6.2.1 Tracing Your Own Source Code

Tracing a session is a very simple process when you have read-write access to the source code of the session to be
traced. Activating and deactivating extended SQL trace requires only that the Oracle kernel execute the SQL
statements shown in Example 6-1. The first line ensures that TIMED_STATISTICS is active for the session, regardless of
the instance-wide value of TIMED_STATSITICS. Without activating Oracle timed statistics, all of your e, c, ela, and tim
values will be zero and therefore of no value in your response time analysis.

Example 6-1. This code activates and deactivates extended SQL trace for a session

alter session set timed_statistics=true
alter session set max_dump_file_size=unlimited
alter session set tracefile_identifier='POX20031031a'
alter session set events '10046 trace name context forever, level 8'
/* code to be traced goes here */
alter session set events '10046 trace name context off'

The second line ensures that the Oracle kernel will not truncate your trace file against your wishes. The
MAX_DUMP_FILE_SIZE parameter permits the Oracle database administrator to restrict the size of trace files generated
by Oracle sessions. The feature is designed to prevent performance analysts from accidentally filling the filesystem(s)
to which USER_DUMP_DEST and BACKGROUND_DUMP_DEST refer. However, forgetting to relax this file size
restriction can be an expensive and frustrating mistake for a performance improvement project.[1] The last thing you
want to see after three weeks of careful preparation to trace a long-running monthly batch job is a shorter-than-
expected trace file with following line at its tail:

[1] The default setting is UNLIMITED on Oracle release 9.

*** DUMP FILE SIZE IS LIMITED TO 1048576 BYTES ***

With the ability to relax the maximum dump file size limit comes the responsibility of not filling the filesystem to
which your trace file will be written. If the Oracle kernel is writing to a filesystem that throws a "filesystem full"
error, the result will be a truncated trace file. You'll end up with something that looks like this at the tail of the file:

WAIT #42: nam='db file sequential read' ela= 17101 p1=10 p2=2213 p3=1
WAIT #42: nam='db file se

Note that some Oracle ports (notably Oracle8i for Microsoft Windows) do not support the UNLIMITED keyword value.
For these ports, simply set MAX_DUMP_FILE_SIZE to a large integer. On the 32-bit implementations of Oracle in our
laboratory, the maximum value you can specify is 231 - 1 = 2,147,483,647. Note also that the parameters
TIMED_STATISTICS and MAX_DUMP_FILE_SIZE have been session-modifiable since Oracle release 7.3. If you are using
a release of Oracle prior to 7.3, the only way to set either of these parameters for a given session is to set them
instance-wide.

It is possible that USER_DUMP_DEST may someday also become a session-settable parameter as well. This feature
would be useful because it would allow you to redirect specific trace files to specific locations, based on motives of
space economy, performance, or just ease of access. Oracle's release 9.2 documentation states that USER_DUMP_DEST
is a session-settable parameter [Oracle (2002)]. However, it is not true at least on Oracle release 9.2.0.1.0 for
Microsoft Windows.

The third line in Example 6-1 causes the resulting trace file to contain the string "POX20031031a" in its file name
(this feature is available in 8.1.7). Inserting some kind of unique ID into the trace file name will make it easy later on
to identify which file contains the information I've collected. Any unique ID will do. In this example, I've chosen a
name that might make sense for run "a" of the "POX" report executed on 31 October 2003.

The fourth line in Example 6-1 activates the extended SQL trace mechanism itself, causing the Oracle kernel to write
statistics into the kernel process' trace file. Note that in Example 6-1, I activated the extended SQL trace mechanism
by setting the tracing level to 8. I deactivated SQL trace by specifying the OFF keyword, which set the tracing level to
0. The tracing levels are summarized in Table 6-1.

Page 2 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Although you can deactivate tracing explicitly, it is often best not to. A session's tracing attribute dies with the
session, so when a user disconnects from Oracle, the trace file closes gracefully. Allowing the disconnection to end
the tracing is the best way to ensure that all of the session's STAT lines are emitted to the trace file, for the reasons
described in Chapter 5. Of course, if you are tracing an application that uses a persistent Oracle connection, like
processes configured as "linked internal" within the Oracle Applications Concurrent Manager, then you must
deactivate tracing explicitly. Fortunately, it is easy enough to reproduce missing STAT data with Oracle's EXPLAIN
PLAN facility or the new V$SQL_PLAN fixed view (available in release 9).

6.2.2 Tracing Someone Else's Source Code

You can trace any Oracle session you want, even background sessions. Do you suspect that writes to database files are
taking too long? Trace DBWR and find out. Do you think that writing to the online redo log files is too slow? Trace
LGWR and find out. Did you ever wonder what it costs for the Oracle kernel to automatically coalesce tablespaces for
you? Trace SMON and find out.

6.2.2.1 Triggering a session to activate its own trace

The plot thickens a little bit when you need to trace a program to which you don't have write-access to the source
code. It's often not much more difficult; you just have to use a little bit of imagination. For example, you can use the
AFTER LOGON trigger function introduced in release 8.1 to activate level-8 tracing for any session with a particular
attribute. The code in Example 6-2 creates a trigger that activates tracing for any session whose Oracle username has a
suffix of _test.

Example 6-2. This code creates a trigger that activates tracing for any session whose Oracle username has the
suffix _test

create or replace trigger trace_test_user after logon on database
begin
 if user like '%_test' escape '\' then
 execute immediate 'alter session set timed_statistics=true';
 execute immediate 'alter session set max_dump_file_size=unlimited';
 execute immediate
 end if;
end;
/

The implementation particulars of a trigger like this will vary widely from one application to the next. The important

Table 6-1. Oracle's "pseudo-error debugging event" number 10046 tracing levels

Level Implied
bitmap Function

0 0000 Emit no statistics.

1 0001 Emit ***, APPNAME, PARSING IN CURSOR, PARSE ERROR, EXEC, FETCH, UNMAP, SORT
UNMAP, ERROR, STAT, and XCTEND lines.

2 0011 Apparently identical to level 1.

4 0101 Emit BINDS sections in addition to level-1 lines.

8 1001 Emit WAIT lines in addition to level-1 lines.

12 1101 Emit level-1, level-4, and level-8 lines.

Do not trace PMON with extended SQL trace. Tracing PMON can cause instance failure
(Oracle bug 2329767, reputedly fixed in Oracle release 10). The good news is that there
are very few legitimate reasons why you might actually want to trace PMON.

Page 3 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

thing is that you understand your application well enough that you can think innovatively about how you might
activate extended SQL tracing for the session of your choice.

6.2.2.2 Activating trace from a third-party session

Oracle provides several packaged procedures that allow you to manipulate attributes of a session to which you are not
connected. Your first task is to identify the session that you want to trace. Many database administrators are already
familiar with means for finding the SID and SERIAL# (from the V$SESSION fixed view) of a specific process from
applications that they manage. Example 6-3 shows one example of a SQL statement that does this.

Example 6-3. This SQL statement lists attributes of a user session for which the session username is supplied in
the Oracle placeholder variable :uname

select
 s.sid db_sid,
 s.serial# db_serial,
 p.spid os_pid,
 to_char(s.logon_time, 'yyyy/mm/dd hh24:mi:ss') db_login_time,
 nvl(s.username, 'SYS') db_user,
 s.osuser os_user,
 s.machine os_machine,
 nvl(decode(
 instr(s.terminal, chr(0)), 0,
 s.terminal, substr(s.terminal, 1, instr(s.terminal, chr(0))-1)
), 'none') os_terminal,
 s.program os_program
from
 v$session s,
 v$process p
where
 s.paddr = p.addr
 and s.username like upper(:uname)

An application can greatly simplify the task of session identification by revealing some identifying information about
the session to the end user. Imagine an application form that can list the values of V$SESSION.SID and
V$SESSION.SERIAL# right on the user's form. Such a feature greatly assists the end-user in describing to the
performance analyst how to identify a session that needs targeted performance analysis.

The package called DBMS_APPLICATION_INFO provides three useful procedures—SET_MODULE, SET_ACTION, and
SET_CLIENT_INFO—for helping to identify targeted Oracle sessions. Each procedure inserts a value into the
V$SESSION fixed view for the session executing the procedure. The attributes MODULE, ACTION, and CLIENT_INFO
create a convenient hierarchy for identifying user actions. For example, Nikolas Alexander's application form might
make the following settings:

dbms_application_info.set_module('Accounts Payable')
dbms_application_info.set_action('Pay Invoices')
dbms_application_info.set_client_info('Nikolas Alexander')

When an application "earmarks" itself by calling DBMS_APPLICATION_INFO procedures, it becomes trivial to target the
Oracle session executed by an individual client, all Oracle sessions executing a particular action, or even all Oracle
sessions participating in the actions of a given module. For example, the following query returns the session
identification information for the set of all Oracle sessions running the Pay Invoices action of the Accounts Payable
module:

select session, serial#
from v$session
where v$session.module = 'Accounts Payable'
 and v$session.action = 'Pay Invoices'

One problem with using the MODULE, ACTION, and CLIENT_INFO attributes through Oracle
release 9 is that setting any of the attributes requires the overhead of a database call
(which includes not just additional workload upon the Oracle kernel, but extra network

Page 4 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Once you have obtained the SID and SERIAL# identification for the session you want to trace, activating trace is
straightforward. Example 6-4 shows how to use the DBMS_SYSTEM package to activate TIMED_STATISTICS for a
specific session and set its MAX_DUMP_FILE_SIZE to the desired value. Even if you don't have access to
DBMS_SYSTEM, you can manipulate these Oracle system parameters system-wide without incurring outage with
ALTER SYSTEM commands in any Oracle release since 7.3.

Example 6-4. Manipulating session parameters for a session identified by :sid and :serial

sys.dbms_system.set_bool_param_in_session(
 :sid, :serial,
 'timed_statistics', true
)
sys.dbms_system.set_int_param_in_session(
 :sid, :serial,
 'max_dump_file_size', 2147483647
)

There are several ways to activate extended SQL tracing for a given session. Two such ways are shown in Example 6-
5 and Example 6-6. Oracle encourages you to use the DBMS_SUPPORT package instead of DBMS_SYSTEM if you have
a choice (Oracle MetaLink note 62294.1). However, Oracle does not ship dbmssupp.sql and prvtsupp.plb with some
software distributions. If you cannot find DBMS_SUPPORT on your system, don't despair. My colleagues and I have
used DBMS_SYSTEM.SET_EV in hundreds of performance improvement projects without negative incident. Friends in
Oracle Support have informed me that the DBMS_SUPPORT.START_TRACE_IN_SESSION procedure is implemented as a
call to SET_EV anyway.

Example 6-5. Activating extended SQL trace at level 8 with START_TRACE_IN_SESSION for a session
identified by :sid and :serial

sys.dbms_support.start_trace_in_session(
 :sid, :serial,
 waits=>true, binds=>false
)
/* code to be traced executes during this time window */
sys.dbms_support.stop_trace_in_session(
 :sid, :serial
)

Example 6-6. Activating extended SQL trace at level 8 with SET_EV for a session identified by :sid and :serial

sys.dbms_system.set_ev(:sid, :serial, 10046, 8, '')
/* code to be traced executes during this time window */
sys.dbms_system.set_ev(:sid, :serial, 10046, 0, '')

capacity consumption as well). For small user actions, the overhead becomes a significant
proportion of the action's total workload.

The safety of using START_TRACE_IN_SESSION is that you're not susceptible to
typographical errors in specifying event 10046. Accidentally typing the wrong event
number could obviously lead to catastrophe.

Do not use DBMS_SYSTEM.START_SQL_TRACE_IN_SESSION to activate extended SQL
trace, because this procedure can activate SQL tracing only at level 1. You cannot activate
extended SQL tracing with START_SQL_TRACE_IN_SESSION.

Page 5 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-6-SECT-2

Page 6 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 6. Collecting Extended SQL Trace Data

6.3 Finding Your Trace File(s)

Once you have traced a session, your next task is to identify the one or more trace files into which your trace data
were written. Each Oracle kernel process creates a single trace file; hence, depending upon an application's
architectural configuration, there can be one or more trace files for each traced Oracle session. For example, Oracle
Multi-Threaded Server can emit data for a single session into two or more trace files. Your first task will be to
identify the directory in which your trace files reside. This step isn't difficult, because there are only two options. The
answer is either the setting of the USER_DUMP_DEST Oracle parameter or the BACKGROUND_DUMP_DEST parameter.[2]

[2] I've heard reports of the occasional bug that causes the Oracle kernel to ignore the dump destination parameters and write trace files
instead to $ORACLE_HOME/rdbms/log.

Next, you will need to identify the correct file (or files) within that directory. If you were able to tag your trace file
name with a unique identifier by setting a session's TRACEFILE_IDENTIFIER attribute, then finding your trace file
should be no problem. Simply search the trace file directory for a file name that contains your ID. However, if you
were unable to tag your file name—for example, because you activated tracing for someone else's code from a third-
party session—then your job is a little more difficult.

6.3.1 Trace File Names

One complication is that the various porting groups at Oracle Corporation have chosen different conventions for
naming trace files. Table 6-2 illustrates some of the names we've seen in the field. Because there's no cross-platform
naming standard, it can seem difficult to write a platform-independent tool that can predict the name of the trace file
for a given session. But this isn't too difficult of a problem if your site uses only a few different environments. You
simply figure out what pattern the Oracle kernel uses for its trace file names, and then you can predict the file names it
will create. For example, on our Linux research server, trace files are named ora_SPID.trc, where SPID is the value of
V$PROCESS.SPID for the session.

6.3.2 Simple Client-Server Applications

Table 6-2. Oracle trace file naming conventions vary by Oracle kernel porting group and by Oracle version

Oracle trace file name Oracle version Operating system

ora_1107.trc 8.1.6.0.0 Linux 2.2.15

ora_31641.trc 9.0.1.0.0 Linux 2.4.4

ora_31729.trc 8.1.5.0.0 OSF1 V4.0

proa021_ora_9452.trc 8.0.5.2.1 SunOS 5.6

cdap_ora_17696.trc 9.2.0.1.0 SunOS 5.8

ora_176344_crswp.trc 8.1.6.3.0 AIX 3

MERKUR_S7_FG_ORACLE_013.trc 8.1.7.0.0 OpenVMS 2-1

ora_3209_orapatch.trc 8.1.6.3.0 HP-UX B.11.00

ORA01532.TRC 8.1.7.0.0 Windows 2000 V5.0

v920_ora_1072.trc 9.2.0.1.0 Windows 2000 V5.1

Page 1 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Even in the modern age of complex multi-tier architectures, you probably execute many programs in simple client-
server mode, especially batch jobs. Any time you isolate an application component for testing, you're likely to enjoy
the same luxury. In such a configuration, any Oracle session creates a single trace file that contains data exactly for
that session (Figure 6-1).

Figure 6-1. For simple client-server configurations, there is one server process per session and, therefore, one
trace file per session

The absence of a cross-platform trace file naming standard made it difficult for our company to develop a portable
software tool to find the right trace file. We considered maintaining a table of file naming patterns (i.e., regular
expressions) that we could update as we learned about changes brought on by new ports and new Oracle releases. But
we decided that maintaining such a table would be too error-prone. Instead, we landed upon the following algorithm:

1. Given the session ID and serial number for your chosen session (the values of V$SESSION.SID and
V$SESSION.SERIAL#), determine the system process ID (SPID) of your server process. The SPID is the value
of V$PROCESS.SPID for your session, which you can find using a join like the one shown in Example 6-3.

2. Identify the directory in which your trace file resides. The directory is the value of USER_DUMP_DEST if
V$SESSION.TYPE='USER'; it is BACKGROUND_DUMP_DEST if V$SESSION.TYPE='BACKGROUND'.

3. List the contents of that directory, ordered by descending file modification time (for example, using ls -lt in
Unix). Note that a file modification time (or mtime) typically has resolution of one second. Hence, if two or
more trace files are created in the same second, then it is impossible for you to know which one is newer by
comparing their mtimes.

4. For each file in that list whose mtime is more recent than the time at which your data collection began (it is
possible to be more precise than this, but comparing the mtime to the data collection begin time is a more
conservative approach):

a. Seek to the final preamble in the file. This is especially important on Microsoft Windows platforms,
where the Oracle kernel tends to reuse trace file names frequently, and where the kernel appends to
existing trace data. (Therefore, it is possible to have two or more preambles in a single trace file.)

b. Search the preamble for the line containing the string "pid" (on Unix variants and OpenVMS) or
"thread id" (on Windows). The preamble consists of all the lines up to the line that begins with the
string "***".

c. If the number following "pid" or "thread id" matches the SPID for your chosen session, then you have
found your file, and you may stop searching.

If you exhaust the list of files without finding a matching system process ID, then stop searching; the file or
files you are looking for do not exist.

I have written portable Perl code that implements approximately these steps as a part of project Sparky, which you can
read about at http://www.hotsos.com.

Page 2 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

This method of peeking at file content may strike you as inelegant, especially if your shop uses only one or two
operating systems. However, the algorithm has the advantage of reliability across platforms and across Oracle
software upgrades. The algorithm scales well with respect to the number of trace files in the directory. It scales less
well if the trace files being peeked at are very large and contain several preambles.

6.3.3 Oracle Parallel Execution

Using Oracle's Parallel Execution (PX) capabilities causes an Oracle kernel process to fork two or more child
processes (called PX slaves) to fulfill the responsibilities of parallel reading and parallel sorting. PX slave processes
inherit the tracing attributes of their query coordinator. Consequently, activating extended SQL trace for a session that
uses PX features will generate several relevant trace files. The remaining task is to identify and analyze all of the
relevant trace files. This task is usually simple enough to do by assessing the modification times of the most recently

generated trace files. For queries using parallel degree p, the number n of relevant trace files will be in the range 1

n 2p + 1 per enlisted instance.

6.3.4 Oracle Multi-Threaded Server

Using Oracle's Multi-Threaded Server (MTS) capability makes finding your trace data a little more complicated. MTS
allows switched connections, which creates a one-to-many relationship between an Oracle session and the Oracle
kernel processes that service database calls made by the session (Figure 6-2). Thus, the trace output from a single
session can be scattered throughout two or more trace files. The Oracle kernel does provide complete session
identification and timestamp data each time a session migrates to a new server process (and hence a new trace file). It
is straightforward to create the logical equivalent of a single trace file for a given session. The modifications to the
method for finding trace files detailed previously are:

� Depending upon your version of Oracle, your shared server trace files may reside in
BACKGROUND_DUMP_DEST (my staff and I have seen this behavior on some release 7 and 8 platforms), or
they may be in USER_DUMP_DEST (we've seen this behavior on release 9).

� Instead of quitting when you find one trace file with the correct session identification information within it,
you must continue searching all the trace files with qualifying modification times.

� Once you've identified all the files that contain relevant trace data, you must discard the irrelevant data from
sessions other than the one in which you're interested, and then you have to merge the resulting data. First,
discard segments of trace data that correspond to sessions other than the specified session. You can determine
easily which sections you want to keep by observing the session ID lines that begin with ***. Finally, merge the
remaining segments of trace data into ascending time order. This is also an easy step because the *** lines
contain times as well. The result is a "virtual" trace file containing only the session information that you
require. You can perform this step by hand with a multi-window text editor, or you can purchase a tool that
can do it for you. We have created such a tool at www.hotsos.com, which we sell as a commercial product.

Figure 6-2. Oracle Multi-Threaded Server uses a one-to-many relationship between client and server
processes; hence, MTS can stream data about a session into more than one trace file

Page 3 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

6.3.5 Connection-Pooling Applications

As I described earlier, connection pooling is a valuable technique designed to reduce the number of database connect
and disconnect calls. Connection-pooling applications are only as easy to diagnose as their design permits. If an
application is instrumented in such a manner that the database calls executed on behalf of a user action can be
identified, then your data collection job will be easy. Unfortunately, many connection-pooling applications are not
instrumented in this way. I believe that the release of Oracle release 10 will facilitate the creation of such
instrumentation over the next several years.

The performance diagnostic problem of connection pooling occurs when the application server conceals the identity
of the end user from the database. Because several users share a single session, it is impossible to determine from the
trace file alone which user has motivated a given line of trace data (Figure 6-3).

If your application lacks instrumentation to facilitate tracing of an individual user's SQL, you are not alone. There are
of course other ways you can make progress. Consider the following scenario: a user named Nancy at IP address
150.121.1.102 has reported a performance problem with the connection-pooling order entry application shown in
Figure 6-3. The application does not facilitate the identification of Nancy's extended SQL trace data.

Figure 6-3. A connection-pooling architecture. Unless the middle tier records a mapping of end user identity to
database call, there will be no way to determine which user motivated which lines of trace data

One simple strategy is to force all users other than Nancy to cease their use of the system temporarily. Then activate
extended SQL tracing for Nancy's service and allow Nancy to execute her slow business function. When the function
has completed, deactivate tracing and allow all the other users back onto the system. This strategy has proven
effective in some limited cases, but in addition to the obvious business disruption, it has a profound diagnostic
disadvantage. If Nancy's performance problem is the result of competition with other sessions, then the data collected
with this method will be devoid of evidence of the problem's root cause.

A more powerful workaround is possible if you can alter the architecture temporarily to isolate Nancy's session.
Figure 6-4 shows one way in which you might accomplish this modification. In this figure, I show the isolation of
Nancy's session by supplying her with her own application server process and single dedicated Oracle server process.
One way to accomplish this switch-over is to provide Nancy with a special "service identifier" (the application service
layer analog of a special TNS alias) that provides connection to the special diagnostic application server process.

The best permanent solution to the connection-pooling diagnosis problem is an
application design that facilitates the activation of extended SQL trace for any individual
application user's experience.

Page 4 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

A commonly stated objection to this method is that the architecture change might itself influence the performance
behavior of Nancy's session while it is being diagnosed. However, the change is more localized in this case than in the
first workaround I described, because you haven't changed the workload that competes with Nancy. Certainly, you
will need to investigate the changes you have made, especially if you notice that an architecture change does beget a
performance change. For example, if the modified architecture shown in Figure 6-4 produces consistently faster
performance than the one shown in Figure 6-3, then you might investigate whether the httpd0 application server
process might be a significant participant in the problem.

Figure 6-4. If you can isolate the user's workload so that no other user action's database call lines appear in its
Oracle trace file, then the diagnostic data collection is no more difficult than in the simple client-server case

A final strategy that I'll describe here is possible only if all the users who share one or more Oracle server processes
with Nancy are doing approximately the same type of work as Nancy is doing. If all the connections that use the
server processes are submitting the same kinds of workload, then each of the lines in the resulting trace file will be
approximately representative of Nancy's workload, as illustrated in Figure 6-5.

Figure 6-5. If all the users who use the Oracle server processes shown here are doing approximately the same
type of work, then any of the workload depicted in the trace file is an approximate representation of any

individual user action's workload

Of course, it is true that you "cannot extrapolate detail from an average" and therefore, considering a single trace file
as representative of Nancy's work bears a risk (see Chapter 3). However, in this case, our knowledge of session
homogeneity is vital additional information. It's as if I had told you that the mean of a list of numbers is eleven and

Page 5 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-6-SECT-3

that the numbers are all approximately the same. That extra bit of information—that the numbers are all
approximately the same—enables you to extrapolate legitimate conclusions about the data behind the mean. If all the
users who share an Oracle server process are doing approximately the same type of work, then you can consider any
line of trace data in the resulting trace file as an approximate representation of any user's workload.

6.3.6 Some Good News

Data collection is more complicated for application configurations that allow a single application user action to
distribute its database calls across two or more distinct Oracle kernel processes. Of course, this is the strategy
employed by virtually all applications being built today. I hope that the problem of trace data identification is one
motivation behind Oracle Corporation's significant investment into diagnostic changes scheduled for Oracle release
10. I do believe that the problem shall become easier to manage in the future. There are two pieces of good news for
today, however:

� Collecting extended SQL trace statistics for many batch jobs is easy, and it should continue to be so, even in
the increasingly n-tier world, because the best configuration for many batch jobs is to run with a dedicated
Oracle server process.

� Every data collection problem that my colleagues have encountered so far has a practical solution. I hope the
www.hotsos.com web site is one of the first places you'll check for new developments as they occur.

Page 6 of 6O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 6. Collecting Extended SQL Trace Data

6.4 Eliminating Collection Error

As you have seen in Chapter 3, it is of paramount importance to collect SQL trace data precisely for a desired time
scope. Especially for short-duration user response time diagnosis projects, it is critical to activate and deactivate SQL
trace at exactly the right times. When trace for a session is activated or deactivated by a third-party session, time
scope violations can occur either at the head or the tail of the trace file. The remainder of this chapter shows you how
to determine how and why data collection errors occur and how to get the maximum possible information from your
trace data.

6.4.1 Time Scope Errors at Trace Activation

When a session activates its own SQL trace, the first thing you'll find in the session's trace file is information
pertaining to the ALTER SESSION SET EVENTS command. However, when a session's trace attribute is set by another
session (with, for example, DBMS_SYSTEM.SET_EV or DBMS_SUPPORT.START_TRACE_IN_SESSION), it's more difficult
to predict what the first event printed into the trace file will be.

6.4.1.1 Missing wait event data at trace activation

If tracing is activated in the midst of a wait event that occurs between database calls, then there can be missing data at
the head of the trace file. For example, consider the sequence of actions depicted in Figure 6-6. In a test, I created two
SQL*Plus sessions: one identified as 7.10583 (the SID and SERIAL# for the session), and another called the "second"
session. In the second session, I executed the following PL/SQL block, supplying the values 7 and 10583 in response
to the prompts:

set serveroutput on
undef 1
undef 2

declare
 t varchar(20);
begin
 dbms_system.set_ev(&1,&2,10046,8,'');
 select to_char(sysdate, 'hh24:mi:ss') into t from v$timer;
 dbms_output.put_line('time='||t);
end;
/

Executing this block activated tracing for session 7.10583 and displayed that my trace activation time was 12:31:11.
Therefore, I know that this time marked the beginning of my requested data collection interval.

Figure 6-6. Although the SET_EV call was made in the second session at 12:31:11, the first entry into the
session 7.10583 trace file didn't occur until 12:31:47.330, leaving an unaccounted-for duration of roughly 36

seconds

Page 1 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Within session 7.10583, I waited a few seconds and then executed a simple query for the current system time. The
query result was 12:31:47. Then I exited session 7.10583. The trace file for the session is shown in Example 6-7.
Notice that the trace file accounts for actions taking place between 12:31:47.330 and approximately 12:31:47.983 (I
computed this second figure by walking the clock in the trace data), but it contains no data whatsoever for the
approximately 36 seconds that elapsed between 12:31:11 and 12:31:47.330.

Example 6-7. This trace file was created by a query for the current system time. The query result was 12:31:47,
which matches the first timestamp (highlighted) in the trace file

/u01/oradata/admin/V901/udump/ora_31262.trc
Oracle9i Enterprise Edition release 9.0.1.0.0 - Production
With the Partitioning option
JServer release 9.0.1.0.0 - Production
ORACLE_HOME = /u01/oradata/app/9.0.1
System name: Linux
Node name: research
Release: 2.4.4-4GB
Version: #1 Fri May 18 14:11:12 GMT 2001
Machine: i686
Instance name: V901
Redo thread mounted by this instance: 1
Oracle process number: 8
Unix process pid: 31262, image: oracle@research (TNS V1-V3)

*** 2003-01-28 12:31:47.330
*** SESSION ID:(7.10583) 2003-01-28 12:31:47.330
APPNAME mod='SQL*Plus' mh=3669949024 act='' ah=4029777240
=
PARSING IN CURSOR #1 len=47 dep=0 uid=5 oct=3 lid=5 tim=1043778707330593 hv=2972477985
ad='51302734'
select to_char(sysdate, 'hh24:mi:ss') from dual
END OF STMT
PARSE #1:c=10000,e=1510,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=4,tim=1043778707330128
EXEC #1:c=0,e=97,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=1043778707330810
WAIT #1: nam='SQL*Net message to client' ela= 5 p1=1650815232 p2=1 p3=0
FETCH #1:c=0,e=156,p=0,cr=1,cu=2,mis=0,r=1,dep=0,og=4,tim=1043778707331088
WAIT #1: nam='SQL*Net message from client' ela= 452 p1=1650815232 p2=1 p3=0
FETCH #1:c=0,e=2,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0,tim=1043778707331819
WAIT #1: nam='SQL*Net message to client' ela= 4 p1=1650815232 p2=1 p3=0
WAIT #1: nam='SQL*Net message from client' ela= 650421 p1=1650815232 p2=1 p3=0
STAT #1 id=1 cnt=1 pid=0 pos=0 obj=221 op='TABLE ACCESS FULL DUAL '
XCTEND rlbk=0, rd_only=1

Page 2 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Because I had complete control over session 7.10583 for the duration of its existence, I know that the 36 seconds that
are missing from the trace data should have been attributed to the kernel event called SQL*Net message from client.
However, if I had not known this, there would have been no accurate way to account for the missing time. This is why
the Sparky data collector (http://www.hotsos.com) queries V$SESSION_WAIT at trace activation (and deactivation).
Had I executed the following query at the time of trace activation, I would have known which wait event was in-
process at the time of trace activation (12:31:11):

select event from v$session_wait where sid=7 and state='WAITING'

6.4.1.2 Missing database call data at trace activation

A more difficult problem occurs when a session's tracing attribute is activated in the midst of a database call. For
example, I activated the tracing attribute for session 8.1665 in the midst of a long-running fetch, resulting in the trace
data shown in Example 6-8. The trace file is disturbing if you study it. In the over 87,700 lines of trace data that I've
not shown here, there are thousands of centiseconds' worth of wait event time attributable to cursor #1 (the sum of the
ela field values on WAIT #1 lines). However, the very first database call printed to the trace file is the UNMAP database
call that is highlighted in Example 6-8. Notice that its total elapsed duration is only 3 centiseconds (e=3). We have
thousands of centiseconds' worth of wait event time motivated by some database call, but the database call that
accounts for all that time doesn't appear in the trace data!

Example 6-8. The trace file produced by activating trace in the midst of a long-running fetch call. The fetch call
in-process when tracing was activated is completely absent from the trace data

Dump file C:\oracle\admin\ora817\udump\ORA02124.TRC
Tue Jan 28 02:13:21 2003
ORACLE V8.1.7.0.0 - Production vsnsta=0
vsnsql=e vsnxtr=3
Windows 2000 Version 5.0 Service Pack 3, CPU type 586
Oracle8i Enterprise Edition release 8.1.7.0.0 - Production
With the Partitioning option
JServer release 8.1.7.0.0 - Production
Windows 2000 Version 5.0 Service Pack 3, CPU type 586
Instance name: ora817

Redo thread mounted by this instance: 1

Oracle process number: 10

Windows thread id: 2124, image: ORACLE.EXE

*** 2003-01-28 02:13:21.520
*** SESSION ID:(8.1665) 2003-01-28 02:13:21.510
WAIT #1: nam='direct path write' ela= 0 p1=4 p2=1499 p3=1
WAIT #1: nam='direct path write' ela= 0 p1=4 p2=1501 p3=1
WAIT #1: nam='db file sequential read' ela= 0 p1=1 p2=3690 p3=1
WAIT #1: nam='db file sequential read' ela= 0 p1=1 p2=3638 p3=1
WAIT #1: nam='db file sequential read' ela= 12 p1=1 p2=3691 p3=1
WAIT #1: nam='db file sequential read' ela= 0 p1=1 p2=3692 p3=1
=
PARSING IN CURSOR #2 len=36 dep=1 uid=0 oct=3 lid=0 tim=38025864 hv=1705880752
ad='39be068'
select file# from file$ where ts#=:1
END OF STMT
PARSE #2:c=0,e=0,p=0,cr=0,cu=0,mis=1,r=0,dep=1,og=0,tim=38025864
...
Approximately 87,700 lines are omitted here, none of which contains a dep=0 action.
...
WAIT #1: nam='direct path read' ela= 0 p1=4 p2=3710 p3=1
WAIT #1: nam='direct path read' ela= 0 p1=4 p2=3711 p3=3
WAIT #1: nam='direct path read' ela= 1 p1=4 p2=3586 p3=1
WAIT #1: nam='direct path read' ela= 0 p1=4 p2=3587 p3=4
WAIT #1: nam='direct path read' ela= 0 p1=4 p2=3591 p3=1
WAIT #1: nam='direct path read' ela= 0 p1=4 p2=3592 p3=2
=
PARSING IN CURSOR #1 len=32 dep=0 uid=5 oct=3 lid=5 tim=38037728 hv=3588977815
ad='39b3e88'
select count(*) from dba_source
END OF STMT

Page 3 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

UNMAP #1:c=0,e=3,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4 ,tim=38037728
WAIT #1: nam='SQL*Net message from client' ela= 2 p1=1111838976 p2=1 p3=0
FETCH #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0 ,tim=38037730
WAIT #1: nam='SQL*Net message to client' ela= 0 p1=1111838976 p2=1 p3=0

Worse yet, where's the fetch that returned my count from DBA_SOURCE? The query consumed over ten seconds of
elapsed time—I sat there and watched it—and it returned one row, yet the only FETCH line in the trace data says the
query took practically no time and returned zero rows.

Example 6-9 shows what we wanted to see but couldn't in Example 6-8. This file was created by activating trace
before parsing the query. Notice that instead of just two database calls (an UNMAP and a FETCH shown in Example 6-
8), we can see five database calls in Example 6-9:

1. The PARSE for the query of DBA_SOURCE, which occurred in the first example before tracing was activated;
hence this line was not emitted into Example 6-8.

2. The EXEC for the query, which also occurred in the first example before tracing was activated; hence this line
was not emitted into Example 6-8.

3. The FETCH that consumed most of the query's response time. In the first example, this call began before
tracing was activated; hence, this line was not emitted into Example 6-8 either.

4. The UNMAP that releases a sort segment used by one of the recursive views.

5. The final FETCH to ensure that there's no more data available from the cursor. Notice that this fetch call
returned zero rows.

Finally, notice that activating trace before the query also graced Example 6-9 with the session's STAT lines, which is a
nice bonus in itself.

Example 6-9. This trace file tail was created by tracing the same count of DBA_SOURCE rows, but this time,
the tracing attribute was set by the session itself. Because tracing was active when the FETCH call began, the
FETCH line appears in the trace data

Dump file C:\oracle\admin\ora817\udump\ORA01588.TRC
Tue Jan 28 10:23:25 2003
ORACLE V8.1.7.0.0 - Production vsnsta=0
vsnsql=e vsnxtr=3
Windows 2000 Version 5.0 Service Pack 3, CPU type 586
Oracle8i Enterprise Edition release 8.1.7.0.0 - Production
With the Partitioning option
JServer release 8.1.7.0.0 - Production
Windows 2000 Version 5.0 Service Pack 3, CPU type 586
Instance name: ora817

Redo thread mounted by this instance: 1

Oracle process number: 9

Windows thread id: 1588, image: ORACLE.EXE

*** 2003-01-28 10:23:25.791
*** SESSION ID:(8.1790) 2003-01-28 10:23:25.781
APPNAME mod='SQL*Plus' mh=3669949024 act='' ah=4029777240
=
PARSING IN CURSOR #1 len=69 dep=0 uid=5 oct=42 lid=5 tim=40966100 hv=589283212
ad='394821c'
alter session set events '10046 trace name context forever, level 8'
END OF STMT
EXEC #1:c=0,e=2,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=4,tim=40966101
WAIT #1: nam='SQL*Net message to client' ela= 0 p1=1111838976 p2=1 p3=0
*** 2003-01-28 10:23:36.267
WAIT #1: nam='SQL*Net message from client' ela= 1046 p1=1111838976 p2=1 p3=0
=
PARSING IN CURSOR #2 len=37 dep=1 uid=0 oct=3 lid=0 tim=40967147 hv=1966425544

Page 4 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

ad='3afe9c4'
select text from view$ where rowid=:1
END OF STMT
PARSE #2:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=40967147
EXEC #2:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=40967147
WAIT #2: nam='db file sequential read' ela= 5 p1=1 p2=1669 p3=1
FETCH #2:c=0,e=5,p=1,cr=2,cu=0,mis=0,r=1,dep=1,og=4,tim=40967152
STAT #2 id=1 cnt=1 pid=0 pos=0 obj=59 op='TABLE ACCESS BY USER ROWID VIEW$ '
=
PARSING IN CURSOR #1 len=32 dep=0 uid=5 oct=3 lid=5 tim=40967154 hv=3588977815
ad='39b3e88'
select count(*) from dba_source
END OF STMT
PARSE #1:c=1,e=8,p=1,cr=2,cu=0,mis=1,r=0,dep=0,og=4 ,tim=40967155
EXEC #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4, tim=40967155
WAIT #1: nam='SQL*Net message to client' ela= 0 p1=1111838976 p2=1 p3=0
WAIT #1: nam='db file sequential read' ela= 2 p1=1 p2=53 p3=1
WAIT #1: nam='db file sequential read' ela= 2 p1=1 p2=642 p3=1
WAIT #1: nam='db file sequential read' ela= 0 p1=1 p2=62 p3=1
...
Approximately 6,700 lines are omitted here, none of which contains a dep=0 action.
...
WAIT #1: nam='direct path read' ela= 0 p1=4 p2=1944 p3=2
WAIT #1: nam='direct path read' ela= 0 p1=4 p2=1834 p3=1
WAIT #1: nam='direct path read' ela= 0 p1=4 p2=1835 p3=4
WAIT #1: nam='direct path read' ela= 0 p1=4 p2=1839 p3=1
WAIT #1: nam='direct path read' ela= 1 p1=4 p2=1840 p3=2
FETCH #1:c=1449,e=3669,p=6979,cr=879863,cu=10,mis=0 ,r=1,dep=0,og=4,tim=40970824
UNMAP #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4 ,tim=40970824
WAIT #1: nam='SQL*Net message from client' ela= 0 p1=1111838976 p2=1 p3=0
FETCH #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0 ,tim=40970824
WAIT #1: nam='SQL*Net message to client' ela= 0 p1=1111838976 p2=1 p3=0
WAIT #1: nam='SQL*Net message from client' ela= 951 p1=1111838976 p2=1 p3=0
XCTEND rlbk=0, rd_only=1
STAT #1 id=1 cnt=1 pid=0 pos=0 obj=0 op='SORT AGGREGATE '
STAT #1 id=2 cnt=436983 pid=1 pos=1 obj=0 op='VIEW DBA_SOURCE '
STAT #1 id=3 cnt=436983 pid=2 pos=1 obj=0 op='SORT UNIQUE '
STAT #1 id=4 cnt=436983 pid=3 pos=1 obj=0 op='UNION-ALL '
STAT #1 id=5 cnt=436983 pid=4 pos=1 obj=0 op='NESTED LOOPS '
STAT #1 id=6 cnt=405 pid=5 pos=1 obj=0 op='NESTED LOOPS '
STAT #1 id=7 cnt=22 pid=6 pos=1 obj=22 op='TABLE ACCESS FULL USER$ '
STAT #1 id=8 cnt=425 pid=6 pos=2 obj=18 op='TABLE ACCESS BY INDEX ROWID OBJ$ '
STAT #1 id=9 cnt=3200 pid=8 pos=1 obj=34 op='INDEX RANGE SCAN '
STAT #1 id=10 cnt=436983 pid=5 pos=2 obj=64 op='TABLE ACCESS BY INDEX ROWID SOURCE$ '
STAT #1 id=11 cnt=437387 pid=10 pos=1 obj=109 op='INDEX RANGE SCAN '
STAT #1 id=12 cnt=0 pid=4 pos=2 obj=0 op='NESTED LOOPS '
STAT #1 id=13 cnt=1 pid=12 pos=1 obj=0 op='NESTED LOOPS '
STAT #1 id=14 cnt=1 pid=13 pos=1 obj=0 op='FIXED TABLE FULL X$JOXFT '
STAT #1 id=15 cnt=0 pid=13 pos=2 obj=18 op='TABLE ACCESS BY INDEX ROWID OBJ$ '
STAT #1 id=16 cnt=0 pid=15 pos=1 obj=33 op='INDEX UNIQUE SCAN '
STAT #1 id=17 cnt=0 pid=12 pos=2 obj=22 op='TABLE ACCESS CLUSTER USER$ '
STAT #1 id=18 cnt=0 pid=17 pos=1 obj=11 op='INDEX UNIQUE SCAN '

Activating extended SQL trace in the midst of any long-running database call is prone to causing problems with
missing data, like the one you've just seen. It is important that you be able to recognize when you have committed a
data collection error like this. Otherwise, if you promote data with this error from data collection into your problem
diagnosis phase, you're going to be sent down a rat hole of having to deal with potentially massive amounts of
overaccounted-for time.

You can detect such a collection error by noticing that the sum of the ela values for a sequence of wait events (WAIT
lines) drastically exceeds the confines of the total elapsed duration (e value) of the database call that motivated those
wait events. In Example 6-8, you can see the problem by noticing that the more than 87,700 WAIT #1 lines accounted
for far more than the e=3 centiseconds of elapsed duration for the UNMAP #1 call that immediately followed those WAIT
lines.

The only cure for this type of collection error that I can recommend is prevention. Avoid activating SQL trace in the
midst of a long-running database call. If an existing trace file contains such an error, then your best remedy is to begin
your data collection procedure again.

Page 5 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

6.4.1.3 Excess database call data at trace activation

Sometimes, the reported duration of a database call exceeds the duration for which the session's tracing attribute has
been activated. This phenomenon has occurred whenever a database call's start time (value of tim - e) precedes the
data collection start time (that is, when tim - e < t0). We have observed this phenomenon in some cases when tracing

has been activated by a third-party session in the midst of a long-running PL/SQL block. (The presence of a long-
running PL/SQL block is what distinguishes this case from the one discussed previously, in which tracing is simply
activated in the midst of a long-running database call.) The only actions in a trace file that can suffer from the excess
time phenomenon are the first actions listed in the file for a given recursive depth (dep field value).

This phenomenon can be particularly difficult to notice if several thousand WAIT lines (which contain no tim fields)
precede your first database call line that contains a tim field. In Chapter 5 you learned how to walk the clock backward
from the first tim field value in the file through all of the ela field values until you reach the first line. However, that
technique is prone to significant accumulation of systematic error as demonstrated during my explanation of clock-
walking in Chapter 5.

A much better way to determine the "virtual" tim value for the first WAIT line in a trace file is to establish conversion
functions that allow you to convert between Oracle tim field values and the system wall clock and back. You can
establish a correlation between the Oracle tim clock and your system's wall clock by executing the following steps:

1. Execute the following commands in SQL*Plus on the system for which you are trying to establish the clock
correlation:

alter system set events '10046 trace name context forever, level 8';
execute sys.dbms_system.ksdddt;
exit

2. Examine the resulting trace data. It will contain lines like the following:

*** 2003-01-28 14:30:56.513
EXEC #1:c=0,e=483,p=0,cr=0,cu=0,mis=0,r=1,dep=0,og=4,tim=1043785856513829

3. From this information, you can establish the direct equivalence of the given tim field value to the given
timestamp. In the example shown here, notice the match in the seconds and milliseconds portions of the two
times (highlighted). On our research system, the mapping is simple: each tim field value is simply a number of
microseconds elapsed since the Unix Epoch (00:00:00 UTC, 1 January 1970). The program shown in Example
6-10 is the tool I use to convert back and forth between tim and wall clock values.

Example 6-10. A program that converts Oracle tim values to wall clock values and back

#!/usr/bin/perl

$Header: /home/cvs/cvm-book1/sqltrace/tim.pl,v 1.3 2003/02/05 05:06:58 cvm Exp $
Cary Millsap (cary.millsap@hotsos.com)

Show the wall time that corresponds to a given tim value

use strict;
use warnings;
use Date::Format qw(time2str);
use Date::Parse qw(str2time);

my $usage = "Usage: $0 wall-time\n $0 tim-value\n\t";
my $arg = shift or die $usage; # tim or wall-time value

When you activate extended SQL trace from a third-party session, do your best never to
execute the activation in the midst of a long-running database call. If you cannot avoid
doing this, then it is probably best to use some of the techniques that I describe in Chapter
8.

Page 6 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

printf "arg =%s\n", $arg;
if ($arg =~ /^[0-9]+$/) {
 # input argument is a tim value
 my $sec = substr($arg, 0, length($arg)-6);
 my $msec = substr($arg, -6);
 # printf "sec =%s\n", $sec;
 # printf "msec=%s\n", $msec;
 printf "%s\n", time2str("%T.$msec %A %d %B %Y", $sec);
}
else {
 # input argument is a wall time value
 my $frac = ($arg =~ /\d+:\d+\.(\d+)/) ? $1 : 0;
 if ((my $l = length $frac) >= 6) {
 # if length(frac) >=6, then round
 $frac = sprintf "%6.0f", $frac/(10**($l-6));
 } else {
 # otherwise, right-pad with zeros
 $frac .= ('0' x (6-$l));
 }
 printf "%s%s\n", str2time($arg), $frac;
}

Here is a simple example of a trace file whose initial lines contain data for events that occur before the moment of
collection activation:

*** 2003-02-24 04:28:19.557
WAIT #1: ... ela= 20000000 ...
EXEC #1:c=10000000,e=30000000,...,tim= 1046082501582881

The problem is difficult to recognize until you convert the time values shown here into like units. Using the tool
shown in Example 6-10 to convert the tim value on my Linux system to a more readable wall clock time, you can see
that the execute call concluded only 2.025881 seconds after the moment tracing was activated:

$ perl tim.pl 1046082501582881
04:28:21.582881 Monday 24 February 2003

The twist is that the execute call consumed 30 seconds of elapsed time (e=30000000). Thus, part of the elapsed
duration for this database call occurred prior to the timestamp printed at the beginning of the trace file. I've already
shown that this timestamp doesn't always match the time at which the session's tracing attribute was actually set. You
need to keep track of the tracing activation time (call it t0) separately. The easiest way to do it is to mark the time in

tim field units when you execute the command to activate SQL trace.

Once you have identified that there is excess time accounted for within a trace file, the next task is to eliminate it.
Figure 6-7 shows how. In this figure, SQL trace is activated at time t0, in the midst of some parse call that occurs

within a long-running PL/SQL block. In this case, some of the parse call's duration e occurs within the desired
observation interval, and some occurs before t0. The excess time in this case is easy to compute, as long as you know

the value of t0 in tim units. You can compute the excess time T as:

T = t0 - (t - e)

When the first several lines emitted into the trace file contain no tim field value, then you can compute the file's
beginning t value by translating the initial timestamp value (on the *** line) into an equivalent tim value as I described
previously. Remember, a timestamp is the ending time of action following that line in the trace file. The problem then
reduces to the same situation as the one described in Figure 6-7, in which you know t, e, t0 (and in fact all of the

intervening ela values as well in case one of the wait event durations includes time t0 as well).

Figure 6-7. When SQL trace is activated by a third-party session at time t0, tracing can begin in the midst of a
database call. When this occurs, the trace file contains excess time that the database call consumed before SQL

trace was activated

Page 7 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

6.4.2 Missing Time at Trace Deactivation

When a session terminates with extended SQL trace turned on, all of the time near the end of the session will be
accounted for in the trace file. Likewise, when a session deactivates its own tracing with an ALTER SESSION SET
EVENTS command, all of the session's time up to that execution will be accounted for. However, if tracing is
deactivated by a third-party session, then it is likely that the deactivation will occur in the midst of either a wait event
or a database call being performed by the session. When this occurs, some desirable data about the session will be
missing from the trace file.

For example, I deactivated tracing for a given session at time tim=1043788733690992. However, the tail of trace file
contains only the following data:

*** 2003-01-28 15:18:43.688
WAIT #1: nam='SQL*Net message from client' ela= 24762690 p1=1650815232 p2=1 p3=0
STAT #1 id=1 cnt=1 pid=0 pos=0 obj=0 op='MERGE JOIN '
STAT #1 id=2 cnt=1 pid=1 pos=1 obj=0 op='SORT JOIN '
STAT #1 id=3 cnt=1 pid=2 pos=1 obj=0 op='FIXED TABLE FULL X$KSUSE '
STAT #1 id=4 cnt=1 pid=1 pos=2 obj=0 op='SORT JOIN '
STAT #1 id=5 cnt=9 pid=4 pos=1 obj=0 op='FIXED TABLE FULL X$KSUPR '
=
PARSING IN CURSOR #1 len=39 dep=0 uid=5 oct=3 lid=5 tim=1043788723689828 hv=364789794
ad='512c8b5c'
select 'missing time at tail' from dual
END OF STMT
PARSE #1:c=0,e=871,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=4,tim=1043788723689794
EXEC #1:c=0,e=72,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=1043788723690030
WAIT #1: nam='SQL*Net message to client' ela= 5 p1=1650815232 p2=1 p3=0
FETCH #1:c=0,e=118,p=0,cr=1,cu=2,mis=0,r=1,dep=0,og=4,tim=1043788723690276
WAIT #1: nam='SQL*Net message from client' ela= 445 p1=1650815232 p2=1 p3=0
FETCH #1:c=0,e=2,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0,tim=1043788723690992
WAIT #1: nam='SQL*Net message to client' ela= 4 p1=1650815232 p2=1 p3=0

Notice the highlighted portion of the final tim field value: the trace file contains information about what happened up
to time ...23.690992 (expressed in seconds), and in fact 4 ms afterward, but there's no record of what happened
between times ...23.690992 and ...33.690992. There is unaccounted-for time of exactly 10 seconds.

Figure 6-8 shows how this happens. In this figure, SQL trace is deactivated at time t1, in the midst of a wait event

named z. But the Oracle kernel cannot emit a wait event's trace line until that wait event has completed. Since trace
deactivation has occurred before the wait event's conclusion, nothing about the wait event is emitted to the trace file.
Part of the wait event's duration occurs after t1, but the portion of its duration that occurred before t1 remains

unaccounted for.

Figure 6-8. When SQL trace is deactivated by a third-party session at time t1, tracing can end in the midst of
an event. When this occurs, the time consumed by the event is never printed into the trace file, resulting in

missing time

Page 8 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The missing time in this case is easy to compute as long as you know the value of t1 in tim units. You can compute the

missing time as:

T = t1 - t

Again, the easiest way to keep track of t1 is to mark the time when you execute the command to deactivate SQL trace.

When you deactivate SQL trace, you also need to determine the name of the event that is in progress at time t1. This is

easy to accomplish from the third-party session with the following SQL:

select event from v$session_wait
where sid=:sid and state='WAITING'

In the Hotsos Sparky data collector, we execute a query that is similar to this one immediately prior to executing the
command to activate tracing. If this query returns no event name, then you should attribute the missing time T to total
CPU consumption. If this query does return an event name, then at least some of the missing time T is attributable to
the event whose name is returned by the query. As you can see in Figure 6-8, some of the missing time may still be
attributable to CPU consumption.

It may be possible to determine approximately how much of T you should attribute to CPU consumption and how
much to event. However, our field work has shown that when the V$SESSION_WAIT query returns an event name,
attributing all of T to that event is a good approximation.

The presence of WAIT lines at the tail of the trace file complicates the computation of missing time slightly by
introducing another walk-the-clock exercise. In this case, you must construct t by walking the clock forward through
ela field values from the final tim field value in the file.

6.4.3 Incomplete Recursive SQL Data

Activating and deactivating SQL trace from a third-party session can also cause truncation of the trace data required
to determine the nature of recursive SQL relationships. Activating SQL trace after the execution of recursive actions
but before the completion of their parent action causes trace data that is absent the child data. For example, if you
execute the following PL/SQL code, the resulting trace file will reveal several recursive relationships between the
various elements of the block and the block itself:

It is also possible that some of the missing time is consumed by an un-instrumented
sequence of Oracle kernel instructions, the concept of which is explained in Chapter 7.

Page 9 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

alter session set events '10046 trace name context forever, level 8';
declare
 cursor lc is select count(*) from sys.source$;
 cnt number;
begin
 open lc;
 fetch lc into cnt;
 close lc;
 open lc;
 fetch lc into cnt;
 close lc;
end;
/

However, you change the trace data considerably if you omit the ALTER SESSION command and activate tracing from
a third-party session (with, for example, DBMS_SUPPORT.START_TRACE_IN_SESSION) in the midst of the block's
execution. What you'll find if you do this is that the kernel will omit a significant amount of detail for any of the
recursive child actions whose executions began before tracing was activated. Activating SQL trace from a third-party
session creates the possibility that the trace file will not contain child database calls for all the recursive parent actions
listed in the trace file.

As in the missing database call data at trace activation case described previously, the best remedy to this type of data
collection error is avoidance. And avoidance should come naturally if you are basing your data collection upon user
actions, as you should be. However, even if you hit the "start collecting" button a little late, this type of data collection
error is not nearly as severe as the database call-interruption type I described previously. Although there will be
missing detail that would perhaps help explain why a session consumed the time it did, at least you'll typically have
the parent database call data to help guide your analysis.

Similarly, deactivating SQL trace from a third-party session creates the possibility that the trace file will not contain
parent database calls for all the recursive (dep > 0) actions in the trace file. For example, imagine in Example 6-11
that tracing had been active for the beginning of the excerpt but then deactivated by a third-party session at the point
labeled [1]. The result is shown in Example 6-12.

Example 6-11. This listing (a copy of Example 6-5) shows what really happened during the parse of the
DBA_OBJECTS query: the parse motivated three recursive database calls upon a query of VIEW$

...
=
PARSING IN CURSOR #2 len=37 dep=1 uid=0 oct=3 lid=0 tim=1033174180230513 hv=1966425544
ad='514bb478'
select text from view$ where rowid=:1
END OF STMT
PARSE #2:c=0,e=107,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=4,tim=1033174180230481
BINDS #2:
 bind 0: dty=11 mxl=16(16) mal=00 scl=00 pre=00 oacflg=18 oacfl2=1 size=16 offset=0
 bfp=0a22c34c bln=16 avl=16 flg=05
 value=00000AB8.0000.0001
EXEC #2:c=0,e=176,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og= 4,tim=1033174180230878
FETCH #2:c=0,e=89,p=0,cr=2,cu=0,mis=0,r=1,dep=1,og= 4,tim=1033174180231021
[1]
STAT #2 id=1 cnt=1 pid=0 pos=0 obj=62 op='TABLE ACCESS BY USER ROWID VIEW$ '
=
PARSING IN CURSOR #1 len=85 dep=0 uid=5 oct=3 lid=5 tim=1033174180244680 hv=1205236555
ad='50cafbec'
select object_id, object_type, owner, object_name from dba_objects where object_id=:v
END OF STMT
PARSE #1:c=10000,e=15073,p=0,cr=2,cu=0,mis=1,r=0,dep=0 ,og=0,tim=1033174180244662
...

In Example 6-11, you have positive evidence of a recursive relationship among database calls, because there are three
actions listed with the string dep=1 (highlighted in both Example 6-11 and Example 6-12). The problem in Example 6-
12 is that tracing was deactivated before the Oracle kernel emitted any information for the dep=0 recursive parent of
these actions. Note that in Example 6-11, you can see the dep=0 action (highlighted) that serves as the parent, but in
Example 6-12, the trace was deactivated before the dep=0 parent was emitted to the trace file.

Example 6-12. In this trace file tail, there is no database call following the dep=1 actions to act as these actions'

Page 10 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-6-SECT-4

parent

...
=
PARSING IN CURSOR #2 len=37 dep=1 uid=0 oct=3 lid=0 tim=1033174180230513 hv=1966425544
ad='514bb478'
select text from view$ where rowid=:1
END OF STMT
PARSE #2:c=0,e=107,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og =4,tim=1033174180230481
BINDS #2:
 bind 0: dty=11 mxl=16(16) mal=00 scl=00 pre=00 oacflg=18 oacfl2=1 size=16 offset=0
 bfp=0a22c34c bln=16 avl=16 flg=05
 value=00000AB8.0000.0001
EXEC #2:c=0,e=176,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og= 4,tim=1033174180230878
FETCH #2:c=0,e=89,p=0,cr=2,cu=0,mis=0,r=1,dep=1,og= 4,tim=1033174180231021
STAT #2 id=1 cnt=1 pid=0 pos=0 obj=62 op='TABLE ACCESS BY USER ROWID VIEW$ '
End of file

From the truncated data of Example 6-12, you can know that there are three recursive SQL actions that have a parent
somewhere, but you cannot know the identity of that parent. These database calls are thus "orphans." Deactivating
SQL trace from a third-party session creates the possibility that the trace file will not contain parent database calls for
all the recursive (dep > 0) actions listed in the trace file.

Once again, the best remedy for this type of collection error is avoidance. Avoidance of this type of error should come
naturally if you are basing your data collection stop time upon the observation of a user action, as you should be.

Page 11 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 6. Collecting Extended SQL Trace Data

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-6-SECT-5

6.5 Exercises

1. System administrators and database administrators can argue endlessly about whether the setting of the
TIMED_STATISTICS Oracle parameter has a profound effect upon application performance. Research Oracle
MetaLink to determine whether there are any bugs that induce an unacceptable penalty upon your
implementation. Next, construct an experiment to reveal the response time impact of using a system-wide
value of TIMED_STATISTICS=TRUE.

2. A trace file contains elapsed time data about significantly less time than the known duration of the attempted
observation interval. Explain the types of data collection error that could have caused this phenomenon to
occur.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part II: Reference

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-7

Chapter 7. Oracle Kernel Timings

Regardless of whether you access the Oracle kernel's timing statistics through extended SQL trace data, V$ fixed
views, or even by hacking directly into the Oracle shared memory segment beneath those V$ fixed views, the time
statistics you're accessing were obtained using a simple set of operating system function calls. Regardless of which
interface you use to access them, those timing statistics are subject to the limitations inherent in the operating system
timers that were used to produce them. This chapter explains those limitations and describes their true impact upon
your work.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 7. Oracle Kernel Timings

7.1 Operating System Process Management

From the perspective of your system's host operating system, the Oracle kernel is just an application. There's nothing
mystical about how it works; it's just a huge, extremely impressive C program. To gain a full appreciation for the
operational timing data that the Oracle kernel reveals, you need to understand a little bit about the services an
operating system provides to the Oracle kernel.

In this section, I am going to focus my descriptions on the behavior of operating systems derived from Unix. If your
operating system is a Unix derivative like Linux, Sun Solaris, HP-UX, IBM AIX, or Tru64, then the explanations you
will see here will closely resemble the behavior of your system. You should find the descriptions in this section
relevant even if you are studying a Microsoft Windows system. If your operating system is not listed here, then I
suggest that you augment the descriptions in this section with the appropriate operating system internals
documentation for your system.

The Design of the Unix Operating System, written by Maurice Bach, contains what is still my very favorite tool for
describing what a process "does" in the context of a modern operating system. Bach's Figure 2-6, entitled "Process
States and Transitions" [Bach 1986 (31)], serves as my starting point. I have reproduced it here as Figure 7-1. In this
diagram, each node (rectangle) represents a state that a process can take on in the operating system. Each edge
(directed line) represents a transition from one state to another. Think of states as nouns and transitions as verbs that
motivate the passage of a process from one state to the next.

Figure 7-1. This simplified process state diagram illustrates the principal states that a process can assume in
most modern time-sharing operating systems [Bach (1986) 31]

Most Oracle kernel processes spend most of their time in the user running state, also called user mode. Parsing SQL,
sorting rows, reading blocks in the buffer cache, and converting data types are common operations that Oracle
executes in user mode. There are two events that can cause a process to transition from the user running state to the
kernel running state (also called kernel mode). It is important for you to understand both transitions from user mode to
kernel mode. Let's follow each one in more detail.

7.1.1 The sys call Transition

When a process in user mode makes an operating system call (a sys call), it transitions to kernel mode. read and select
are two typical system calls. Once in kernel mode, a process is endowed with special privileges that allow it to
manipulate low-level hardware components and arbitrary memory locations. In kernel mode, a process is able, for
example, to manipulate I/O devices like sockets and disk drives [Bovet and Cesati (2001) 8].

Many types of system call can be expected to wait on a device for many, many CPU cycles. For example, a read call
of a disk subsystem today typically consumes time on the order of a few milliseconds. Many CPUs today can execute
millions of instructions in the time it takes to execute one physical disk I/O operation. So during a single read call,
enough time to perform on the order of a million CPU instructions will elapse. Designers of efficient read system calls
of course realize this and design their code in a manner that allows another process to use the CPU while the reading

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-7-SECT-1

process waits.

Imagine, for example, an Oracle kernel process executing some kind of read system call to obtain a block of Oracle
data from a disk. After issuing a request from an expectedly "slow" device, the kernel code in the read system call will
transition its calling process into the sleep state, where that process will await an interrupt signaling that the I/O
operation is complete. This polite yielding of the CPU allows another ready to run process to consume the CPU
capacity that the reading process would have been unable to use anyway.

When the I/O device signals that the asleep process's I/O operation is ready for further processing, the process is
"awoken," which is to say that it transitions to ready to run state. When the process becomes ready to run, it becomes
eligible for scheduling. When the scheduler again chooses the process for execution, the process is returned to kernel
running state, where the remaining kernel mode code path of the read call is executed (for example, the data transfer
of the content obtained from the I/O channel into memory). The final instruction in the read subroutine returns control
to the calling program (our Oracle kernel process), which is to say that the process transitions back into user running
state. In this state, the Oracle kernel process continues consuming user-mode CPU until it next receives an interrupt or
makes a system call.

7.1.2 The interrupt Transition

The second path through the operating system process state diagram is motivated by an interrupt. An interrupt is a
mechanism through which a device such as an I/O peripheral or the system clock can interrupt the CPU
asynchronously [Bach (1986) 16]. I've already described why an I/O peripheral might interrupt a process. Most
systems are configured so that the system clock generates an interrupt every 1/100th of a second (that is, once per
centisecond). Upon receipt of a clock interrupt, each process on the system in user running state saves its context (a
frozen image of what the process was doing) and executes the operating system scheduler subroutine. The scheduler
determines whether to allow the process to continue running or to preempt the process.

Preemption essentially sends a process directly from kernel running state to ready to run state, clearing the way for
some other ready to run process to return to user running state [Bach (1986) 148]. This is how most modern operating
systems implement time-sharing. Any process in ready to run state is subject to treatment that is identical to what I
have described previously. The process becomes eligible for scheduling, and so on. Your understanding of
preemptions motivated by clock interrupts will become particularly important later in this chapter when I describe one
of the most important causes of "missing data" in an Oracle trace file.

7.1.3 Other States and Transitions

I have already alluded to the existence of a more complicated process state transition diagram than I've shown in
Figure 7-1. Indeed, after discussing the four process states and seven of the transitions depicted in Figure 7-1, Bach
later in his book reveals a more complete process state transition diagram [Bach (1986) 148]. The more complicated
diagram details the actions undertaken during transitions such as preempting, swapping, forking, and even the
creation of zombie processes. If you run applications on Unix systems, I strongly encourage you to add Bach's book to
your library.

For the purposes of the remainder of this chapter, however, Figure 7-1 is all you need. I hope you will agree that it is
easy to learn the precise definitions of Oracle timing statistics by considering them in terms of the process states
shown in Figure 7-1.

exit, by the way, is itself a system call, so even when an application finishes its work, the
only ways out of the user running state are the sys call and interrupt transitions.

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 7. Oracle Kernel Timings

7.2 Oracle Kernel Timings

The Oracle kernel publishes only a few different types of timing information. Extended SQL trace output contains
four important ones. You can see all four on the following two lines, generated by an Oracle release 9.0.1.2.0 kernel a
Solaris 5.6 system:

WAIT #34: nam='db file sequential read' ela= 14118 p1=52 p2=2755 p3=1
FETCH #34:c=0,e=15656,p=1,cr=6,cu=0,mis=0,r=1,dep=3,og=4,tim=1017039276349760

The two adjacent lines of trace data shown here describe a single fetch database call. The timing statistics in these
lines are the following:

ela= 14118

The Oracle kernel consumed an elapsed time of 14,118 microseconds (or µs, where 1 µs = 0.000 001 seconds)
executing a system call denoted db file sequential read.

c=0

The Oracle kernel reports that a fetch database call consumed 0 µs of total CPU capacity.

e=15656

The kernel reports that the fetch consumed 15,656 µs of elapsed time.

tim=1017039276349760

The system time when the fetch concluded was 1,017,039,276,349,760 (expressed in microseconds elapsed
since midnight UTC 1 January 1970).

The total elapsed duration of the fetch includes both the call's total CPU capacity consumption and any time that the
fetch has consumed during the execution of Oracle wait events. The statistics in my two lines of trace data are related
through the approximation:

e c + ela

In this case, the approximation is pretty good on a human scale: 15656 0 + 14118, which is accurate to within
0.001538 seconds.

A single database call (such as a parse, execute, or fetch) emits only one database call line (such as PARSE, EXEC, or
FETCH) to the trace data (notwithstanding the recursive database calls that a single database call can motivate).
However, a single database call may emit several WAIT lines representing system calls for each cursor action line. For
example, the following trace file excerpt shows 6,288 db file sequential read calls executed by a single fetch:

WAIT #44: nam='db file sequential read' ela= 15147 p1=25 p2=24801 p3=1

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-7-SECT-2

...
6,284 similar WAIT lines are omitted here for clarity

...
WAIT #44: nam='db file sequential read' ela= 105 p1=25 p2=149042 p3=1
WAIT #44: nam='db file sequential read' ela= 18831 p1=5 p2=115263 p3=1
WAIT #44: nam='db file sequential read' ela= 114 p1=58 p2=58789 p3=1
FETCH #44:c=7000000,e=23700217,p=6371,cr=148148,cu=0,mis=0,r=1,dep=1,og=4,
tim=1017039304454213

So the true relationship that binds the values of c, e, and ela for a given database call must refer to the sum of ela
values that were produced within the context of a given database call:

This approximation is the basis for all response time measurement in the Oracle kernel.

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 7. Oracle Kernel Timings

7.3 How Software Measures Itself

Finding out how the Oracle kernel measures itself is not a terribly difficult task. This section is based on studies of
Oracle8i and Oracle9i kernels running on Linux systems. The Oracle software for your host operating system might
use different system calls than our system uses. To find out, you should see how your Oracle system behaves by using
a software tool that traces system calls for a specified process. For example, Linux provides a tool called strace to
trace system calls. Other operating systems use different names for the tool. There is truss for Sun Solaris (truss is
actually the original system call tracing tool for Unix), sctrace for IBM AIX, tusc for HP-UX, and strace for Microsoft
Windows. I shall use the Linux name strace to refer generically to the collection of tools that trace system calls.

The strace tool is easy to use. For example, you can observe directly what the Oracle kernel is doing, right when each
action takes place, by executing a command like the following:

$ strace -p 12417
read(7,

In this example, strace shows that a Linux program with process ID 12417 (which happens to have been an Oracle
kernel process on my system) has issued a read call and is awaiting fulfillment of that call (hence the absence of the
right parenthesis in the output shown here).

It is especially instructive to view strace output and Oracle SQL trace output simultaneously in two windows, so that
you can observe exactly when lines are emitted to both output streams. The write calls that the Oracle kernel uses to
emit its trace data of course appear in the strace output exactly when you would expect them to. The appearance of
these calls makes it easy to understand when Oracle kernel actions produce trace data. In Oracle9i for Linux (and
Oracle9i for some other operating systems), it is especially easy to correlate strace output and SQL trace output,
because values returned by gettimeofday appear directly in the trace file as tim values. By using strace and SQL trace
simultaneously in this manner, you can positively confirm or refute whether your Oracle kernel behaves like the
pseudocode that you will see in the following sections.

7.3.1 Elapsed Time

The Oracle kernel derives all of its timing statistics from the results of system calls issued upon the host operating
system. Example 7-1 shows how a program like the Oracle kernel computes the durations of its own actions.

Example 7-1. How software measures its own response time

t0 = gettimeofday; # mark the time immediately before doing something
do_something;

At the time of this writing, it is possible to find strace tools for several operating systems
at http://www.pugcentral.org/howto/truss.htm.

Using strace will introduce significant measurement intrusion effect into the performance
of the program you're tracing. I discuss the performance effects of measurement intrusion
later in this chapter.

Page 1 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

t1 = gettimeofday; # mark the time immediately after doing it
t = t1 - t0; # t is the approximate duration of do_something

The gettimeofday function is an operating system call found on POSIX-compliant systems. You can learn by viewing
your operating system's documentation that gettimeofday provides a C language data structure to its caller that contains
the number of seconds and microseconds that have elapsed since the Epoch, which is 00:00:00 Coordinated Universal
Time (UTC), January 1, 1970.

Imagine the execution of Example 7-1 on a timeline, as shown in Figure 7-2. In the drawing, the value of the
gettimeofday clock is t0 = 1492 when a function called do_something begins. The value of the gettimeofday clock is t1 =

1498 when do_something ends. Thus the measured duration of do_something is t = t1 - t0 = 6 clock ticks.

Figure 7-2. The function called do_something begins after clock tick 1492 and ends after clock tick 1498,

resulting in a measured response time of 6 clock ticks

The Oracle kernel reports on two types of elapsed duration: the e statistic denotes the elapsed duration of a single
database call, and the ela statistic denotes the elapsed duration of an instrumented sequence of instructions (often a

Documentation for such system calls is usually available with your operating system. For
example, on Unix systems, you can view the gettimeofday documentation by typing man
gettimeofday at the Unix prompt. Or you can visit http://www.unix-
systems.org/single_unix_specification/ to view the POSIX definition.

Note that in my pseudocode, I've hidden many mechanical details that I find distracting.
For example, gettimeofday doesn't really return a time; it returns 0 for success and -1 for
failure. It writes the "returned" time as a two-element structure (a seconds part and a
microseconds part) in a location referenced by the caller's first argument in the
gettimeofday call. I believe that showing all this detail in my pseudocode would serve only
to complicate my descriptions unnecessarily.

I've used the time values 1492 through 1499 to keep our discussion simple. These values
of course do not resemble the actual second and microsecond values that gettimeofday
would return in the twenty-first century. Consider the values I'll discuss in this book to be
just the final few digits of an actual clock.

Page 2 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

system call) executed by an Oracle kernel process. The kernel performs these computations by executing code that is
structured roughly like the pseudocode shown in Example 7-2. Notice that the kernel uses the method shown in
Example 7-1 as the basic building block for constructing the e and ela metrics.

Example 7-2. Pseudocode showing how the Oracle kernel measures its own run times

procedure dbcall {
 e0 = gettimeofday; # mark the wall time
 ... # execute the db call (may call wevent)
 e1 = gettimeofday; # mark the wall time
 e = e1 - e0; # elapsed duration of dbcall
 print(TRC, ...); # emit PARSE, EXEC, FETCH, etc. line
}

procedure wevent {
 ela0 = gettimeofday; # mark the wall time
 ... # execute the wait event here
 ela1 = gettimeofday; # mark the wall time
 ela = ela1 - ela0; # ela is the duration of the wait event
 print(TRC, "WAIT..."); # emit WAIT line
}

7.3.2 CPU Consumption

The Oracle kernel reports not only the elapsed duration e for each database call and ela for each system call, but also
the amount of total CPU capacity c consumed by each database call. In the context of the process state transition
diagram shown in Figure 7-1, the c statistic is defined as the approximate amount of time that a process has spent in
the following states:

user running
kernel running

On POSIX-compliant operating systems, the Oracle kernel obtains CPU usage information from a function called
getrusage on Linux and many other operating systems, or a similar function called times on HP-UX and a few other
systems. Although the specifications of these two system calls vary significantly, I will use the name getrusage to refer
generically to either function. Each function provides its caller with a variety of statistics about a process, including
data structures representing the following four characteristics:

� Approximate time spent by the process in user running state

� Approximate time spent by the process in kernel running state

� Approximate time spent by the process's children in user running state

� Approximate time spent by the process's children in kernel running state

Each of these amounts is expressed in microseconds, regardless of whether the data are accurate to that degree of
precision.

The Oracle kernel performs c, e, and ela computations by executing code that is structured roughly like the
pseudocode shown in Example 7-3. Notice that this example builds upon Example 7-2 by including executions of the
getrusage system call and the subsequent manipulation of the results. In a method analogous to the gettimeofday

You'll see shortly that, although by POSIX standard, getrusage returns information
expressed in microseconds, rarely does the information contain detail at sub-centisecond
resolution.

Page 3 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-7-SECT-3

calculations, the Oracle kernel marks the amount of user-mode CPU time consumed by the process at the beginning of
the database call, and then again at the end. The difference between the two marks (c0 and c1) is the approximate
amount of user-mode CPU capacity that was consumed by the database call. Shortly I'll fill you in on exactly how
approximate the amount is.

Example 7-3. Pseudocode showing how the Oracle kernel measures its own run times and CPU consumption

procedure dbcall {
 e0 = gettimeofday; # mark the wall time
 c0 = getrusage; # obtain resource usage statistics
 ... # execute the db call (may call wevent)
 c1 = getrusage; # obtain resource usage statistics
 e1 = gettimeofday; # mark the wall time
 e = e1 - e0; # elapsed duration of dbcall
 c = (c1.utime + c1.stime)
 - (c0.utime + c0.stime); # total CPU time consumed by dbcall
 print(TRC, ...); # emit PARSE, EXEC, FETCH, etc. line
}

procedure wevent {
 ela0 = gettimeofday; # mark the wall time
 ... # execute the wait event here
 ela1 = gettimeofday; # mark the wall time
 ela = ela1 - ela0; # ela is the duration of the wait event
 print(TRC, "WAIT..."); # emit WAIT line
}

Page 4 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 7. Oracle Kernel Timings

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-7-SECT-4

7.4 Unaccounted-for Time

Virtually every trace file you'll ever analyze will have some mismatch between actual response time and the amount
of time that the Oracle kernel accounts for in its trace file. Sometimes there will be an under-counting of time, and
sometimes there will be an over-counting of time. For reasons you'll understand shortly, under-counting is more
common than over-counting. In this book, I refer to both situations as unaccounted-for time. When there's missing
time, there is a positive unaccounted-for duration. When there is an over-counting of time, there is a negative
unaccounted-for duration. Unaccounted-for time in Oracle trace files can be caused by five distinct phenomena:

� Measurement intrusion effect

� CPU consumption double-counting

� Quantization error

� Time spent not executing

� Un-instrumented Oracle kernel code

I'll discuss each of these contributors of unaccounted-for time in the following sections.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 7. Oracle Kernel Timings

7.5 Measurement Intrusion Effect

Any software application that attempts to measure the elapsed durations of its own subroutines is susceptible to a type
of error called measurement intrusion effect [Malony et al. (1992)]. Measurement intrusion effect is a type of error
that occurs because the execution duration of a measured subroutine is different from the execution duration of the
subroutine when it is not being measured. In recent years, I have not had reason to suspect that measurement intrusion
effect has meaningfully influenced any Oracle response time measurement I've analyzed. However, understanding the
effect has helped me fend off illegitimate arguments against the reliability of Oracle operational timing data.

To understand measurement intrusion, imagine the following problem. You have a program called U, which looks
like this:

program U {
 # uninstrumented
 do_something;
}

Your goal is to find out how much time is consumed by the subroutine called do_something. So you instrument your
program U, resulting in a new program called I:

program I {
 # instrumented
 e0 = gettimeofday; # instrumentation
 do_something;
 e1 = gettimeofday; # instrumentation
 printf("e=%.6f sec\n", (e1-e0)/1E6);
}

You would expect this new program I to print the execution duration of do_something. But the value it prints is only an
approximation of do_something's runtime duration. The value being printed, e1 - e0 converted to seconds, contains not
just the duration of do_something, but the duration of one gettimeofday call as well. The picture in Figure 7-3 shows
why.

Figure 7-3. The elapsed time e1 - e0 is only an approximation of the duration of do_something; the duration
also includes the total execution duration (shaded area) of one gettimeofday call

Page 1 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The impact of measurement intrusion effect upon program U is the following:

� Execution time of I includes two gettimeofday code paths more than the execution time of U.

� The measured duration of do_something in I includes one full gettimeofday code path more than do_something
actually consumes.

This impact is minimal for applications in which the duration of one gettimeofday call is small relative to the duration
of whatever do_something-like subroutine you are measuring. However, on systems with inefficient gettimeofday
implementations (I believe that HP-UX versions prior to release 10 could be characterized this way), the effect could
be meaningful.

Measurement intrusion effect is a type of systematic error. A systematic error is the result of an experimental
"mistake" that is consistent across measurements [Lilja (2000)]. The consistency of measurement intrusion makes it
possible to compute its influence upon your data. For example, to quantify the Oracle kernel's measurement intrusion
effect introduced by gettimeofday calls, you need two pieces of data:

� The number of timer calls that the Oracle kernel makes for a given operation.

� The expected duration of a single timer call.

Once you know the frequency and average duration of your Oracle kernel's timer calls, you have everything you need
to quantify their measurement intrusion effect. Measurement intrusion is probably one reason for the missing time that
you will encounter when performing an Oracle9i clock-walk (Chapter 5).

Finding these two pieces of data is not difficult. You can use the strace tool for your platform to find out how many
timer calls your Oracle kernel makes for a given set of database operations. To compute the expected duration of one
timer call, you can use a program like the one shown in Example 7-4. This code measures the distance between
adjacent gettimeofday calls and then computes their average duration over a sample size of your choosing.

Example 7-4. Measuring the measurement intrusion effect of calls to gettimeofday

#!/usr/bin/perl

Page 2 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-7-SECT-5

$Header: /home/cvs/cvm-book1/measurement\040intrusion/mef.pl,v 1.4 2003/03/19 04:38:48
cvm Exp $
Cary Millsap (cary.millsap@hotsos.com)
Copyright (c) 2003 by Hotsos Enterprises, Ltd. All rights reserved.

use strict;
use warnings;
use Time::HiRes qw(gettimeofday);

sub fnum($;$$) {
 # return string representation of numeric value in
 # %.${precision}f format with specified separators
 my ($text, $precision, $separator) = @_;
 $precision = 0 unless defined $precision;
 $separator = "," unless defined $separator;
 $text = reverse sprintf "%.${precision}f", $text;
 $text =~ s/(\d\d\d)(?=\d)(?!\d*\.)/1separator/g;
 return scalar reverse $text;
}

my ($min, $max) = (100, 0);
my $sum = 0;
print "How many iterations? "; my $n = <>;
print "Enter 'y' if you want to see all the data: "; my $all = <>;
for (1 .. $n) {
 my ($s0, $m0) = gettimeofday;
 my ($s1, $m1) = gettimeofday;
 my $sec = ($s1 - $s0) + ($m1 - $m0)/1E6;
 printf "%0.6f\n", $sec if $all =~ /y/i;
 $min = $sec if $sec < $min;
 $max = $sec if $sec > $max;
 $sum += $sec;
}
printf "gettimeofday latency for %s samples\n", fnum($n);
printf "\t%0.6f seconds minimum\n", $min;
printf "\t%0.6f seconds maximum\n", $max;
printf "\t%0.9f seconds average\n", $sum/$n;

On my Linux system used for research (800MHz Intel Pentium), this code reveals typical gettimeofday latencies of
about 2 µs:

Linux$ mef
How many iterations? 1000000
Enter 'y' if you want to see all the data: n
gettimeofday latency for 1,000,000 samples
 0.000001 seconds minimum
 0.000376 seconds maximum
 0.000002269 seconds average

Measurement intrusion effect depends greatly upon operating system implementation. For example, on my Microsoft
Windows 2000 laptop computer (also 800MHz Intel Pentium), gettimeofday causes more than 2.5 times as much
measurement intrusion effect as our Linux server, with an average of almost 6 µs:

Win2k$ perl mef.pl
How many iterations? 1000000
Enter 'y' if you want to see all the data: n
gettimeofday latency for 1,000,000 samples
 0.000000 seconds minimum
 0.040000 seconds maximum
 0.000005740 seconds average

By experimenting with system calls in this manner, you can begin to understand some of the constraints under which
the kernel developers at Oracle Corporation must work. Measurement intrusion effect is why developers tend to create
timing instrumentation only for events whose durations are long relative to the duration of the measurement intrusion.
The tradeoff is to provide valuable timing information without debilitating the performance of the application being
measured.

Page 3 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Page 4 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 7. Oracle Kernel Timings

7.6 CPU Consumption Double-Counting

Another inaccuracy in the relationship:

is an inherent double-counting of CPU time in the right-hand side of the approximation. The Oracle kernel definition
of the c statistic is all time spent in user running and kernel running states. Each ela statistic contains all time spent
within an instrumented sequence of Oracle kernel instructions. When the instrumented sequence of instructions causes
consumption of CPU capacity, that consumption is double-counted.

For example, imagine an Oracle database call that performs a disk read, such as the one shown in Figure 7-4. In this
drawing, a database call begins its execution at time e0. For the duration labeled A, the call consumes CPU capacity in

the user running state. At time ela0, the Oracle kernel process issues the gettimeofday call that precedes the execution of

an Oracle wait event. Depending upon the operating system, the execution of the gettimeofday system call puts the
Oracle kernel process into kernel running state for a few microseconds before retuning the process to user running
state.

After some more CPU consumption in user running state for the duration labeled B, the process transitions into kernel
running state for the duration labeled C. At the conclusion of duration C, the kernel process transitions to the asleep
state and awaits the result of the request from the disk.

Figure 7-4. This Oracle database call consumes CPU in both user mode and kernel mode, and it waits for a
read from disk

Some Linux kernels allow the gettimeofday system call to execute entirely in user running
state, resulting in a significant performance improvement (for one example, see
http://www-124.ibm.com/linux/patches/?patch_id=597).

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-7-SECT-6

Upon completion of the request, the disk sends an interrupt that motivates the wakeup of the Oracle kernel process,
which then transitions to the ready to run state. In Figure 7-4, the CPU is idle at this point in time, and the process is
immediately scheduled and thus transitioned to kernel running state. While executing in this state, the Oracle process
then wraps up the details of the disk I/O call, such as the copying of the data from the I/O channel to the Oracle
process's user-addressable memory, which consumes the duration labeled D.

Finally at the end of duration D, the disk read call returns, and the Oracle process transitions to user running state for
the duration labeled E. At time ela1, the Oracle process marks the end of the disk read with a gettimeofday call. The

Oracle process then proceeds to execute the remaining instructions (also in user running state) that are required to
complete the database call. Finally, at time e1, the database call processing is complete.

As the result of these actions, the Oracle kernel will produce the following statistics for the database call:

e = e1 - e0

ela = ela1 - ela0 = B + C + Disk + D + E

c = A + B + C + D + E + F

I shall describe, a little later, exactly how c is computed. The value that c will have is approximately the sum of the
durations A, B, C, D, E, and F. At this point, it should be easy for you to see where the double-counting occurs. Both
ela and c contain the durations B, C, D, and E. The segments of CPU consumption that have occurred within the
confines of the wait event have been double-counted.

How big of a problem is the double-counting? Fortunately, the practical impact is usually negligible. Our experience
with over a thousand trace files at www.hotsos.com indicates that the durations marked as B, C, D, and E in Figure 7-
4 are usually small. It appears that most of the wait events instrumented in Oracle8i and Oracle9i have response times
(that is, ela values) that are dominated by durations other than CPU consumption. In a few rare cases (I'll show you
one shortly), the double-counting shows up in small sections of trace data, but in the overall scheme of Oracle
response time accounting, the effect of CPU consumption double-counting seems to be generally negligible.

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 7. Oracle Kernel Timings

7.7 Quantization Error

A few years ago, a friend argued that Oracle's extended SQL trace capability was a performance diagnostic dead-end.
His argument was that in an age of 1GHz CPUs, the one-centisecond resolution of the then-contemporary Oracle8i
kernel was practically useless. However, in many hundreds of projects in the field, the extended SQL trace feature has
performed with practically flawless reliability—even the "old one-centisecond stuff" from Oracle8i. The reliability of
extended SQL trace is difficult to understand unless you understand the properties of measurement resolution and
quantization error.

7.7.1 Measurement Resolution

When I was a kid, one of the everyday benefits of growing up in the Space Age was the advent of the digital alarm
clock. Digital clocks are fantastically easy to read, even for little boys who don't yet know how to "tell the time." It's
hard to go wrong when you can see those big red numbers showing "7:29". With an analog clock, a kid sometimes has
a hard time knowing whether it's five o'clock and seven o'clock, but the digital difference between 5 and 7 is
unmistakable.

But there's a problem with digital clocks. When you glance at a digital clock that shows "7:29", how close is it to
7:30? The problem with digital clocks is that you can't know. With a digital clock, you can't tell whether it's 7:29:00
or 7:29:59 or anything in-between. With an analog clock, even one without a second-hand, you can guess about
fractions of minutes by looking at how close the minute hand is to the next minute.

All times measured on digital computers derive ultimately from interval timers, which behave like the good old
digital clocks at our bedsides. An interval timer is a device that ticks at fixed time intervals. Times collected from
interval timers can exhibit interesting idiosyncrasies. Before you can make reliable decisions based upon Oracle
timing data, you need to understand the limitations of interval timers.

An interval timer's resolution is the elapsed duration between adjacent clock ticks. Timer resolution is the inverse of
timer frequency. So a timer that ticks at 1 GHz (approximately 109 ticks per second) has a resolution of approximately
1/109 seconds per tick, or about 1 nanosecond (ns) per tick. The larger a timer's resolution, the less detail it can reveal
about the duration of a measured event. But for some timers (especially ones involving software), making the
resolution too small can increase system overhead so much that you alter the performance behavior of the event you're
trying to measure.

Heisenberg Uncertainty and Computer Performance Analysis

The problem of measuring computer event durations with a discrete clock is analogous to the famous
uncertainty principal of quantum physics. The uncertainty principal, formulated by Werner Heisenberg
in 1926, holds that the uncertainty in the position of a particle times the uncertainty in its velocity times
the mass of the particle can never be smaller than a certain quantity, which is known as Planck's constant
[Hawking (1988) 55]. Hence, for very small particles, it is impossible to know precisely both the
particle's position and its velocity.

Similarly, it is difficult to measure some things very precisely in a computing system, especially when
using software clocks. A smaller resolution yields a more accurate measurement, but using a smaller
resolution on a clock implemented with software can have a debilitating performance impact upon the
application you're trying to measure. You'll see an example later in this chapter when I discuss the
resolution of the getrusage system function.

In addition to the influences of resolution upon computer application timings, the effects of measurement

Page 1 of 12O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

As a timing statistic passes upward from hardware through various layers of application software, each application
layer can either degrade its resolution or leave its resolution unaltered. For example:

� The resolution of the result of the gettimeofday system call, by POSIX standard, is one microsecond. However,
many Intel Pentium CPUs contain a hardware time stamp counter that provides resolution of one nanosecond.
The Linux gettimeofday call, for example, converts a value from nanoseconds (10-9 seconds) to microseconds
(10-6 seconds) by performing an integer division of the nanosecond value by 1,000, effectively discarding the
final three digits of information.

� The resolution of the e statistic on Oracle8i is one centisecond. However, most modern operating systems
provide gettimeofday information with microsecond accuracy. The Oracle8i kernel converts a value from
microseconds (10-6 seconds) to centiseconds (10-2 seconds) by performing an integer division of the
microsecond value by 10,000, effectively discarding the final four digits of information [Wood (2003)].

Thus, each e and ela statistic emitted by an Oracle8i kernel actually represents a system characteristic whose actual
value cannot be known exactly, but which resides within a known range of values. Such a range of values is shown in
Table 7-1. For example, the Oracle8i statistic e=2 can refer to any actual elapsed duration ea in the range:

2.000 000 cs ea 2.999 999 cs

7.7.2 Definition of Quantization Error

Quantization error is the quantity E defined as the difference between an event's actual duration ea and its measured

duration em. That is:

intrusion of course influence the user program's execution time as well. The total impact of such
unintended influences of instrumentation upon an application's performance creates what Oracle
performance analysts might refer to as a "Heisenberg-like effect."

Table 7-1. A single e or ela statistic in Oracle8i represents a range of possible actual timing values

e, ela statistic (cs) Minimum possible gettimeofday value (cs) Maximum possible gettimeofday value (cs)

0 0.000 000 0.999 999

1 1.000 000 1.999 999

2 2.000 000 2.999 999

3 3.000 000 3.999 999

...

On the Importance of Testing Your System

Please test conjectures about how Oracle computes times on your system by using a tool like strace. One
trace file in our possession generated by Oracle release 9.2.0.1.0 running on a Compaq OSF1 host
reveals a c resolution of 3,333.3 µs, an e resolution of 1,000 µs, and an ela resolution of 10,000 µs. These
data of course make us wonder whether the e and ela times on that platform are really coming from the
same gettimeofday system call. (If the e and ela values on this platform had come from the same system
call, then why would the resulting values have different apparent resolutions?) With a system call trace,
it would be a very easy question to answer. Without one, we can only guess.

Page 2 of 12O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

E = em - ea

Let's revisit the execution of Example 7-1 superimposed upon a timeline, as shown in Figure 7-5. In this drawing,
each tick mark represents one clock tick on an interval timer like the one provided by gettimeofday. The value of the
timer was t0 = 1492 when do_something began. The value of the timer was t1 = 1498 when do_something ended. Thus

the measured duration of do_something was em = t1 - t0 = 6. However, if you physically measure the length of the

duration ea in the drawing, you'll find that the actual duration of do_something is ea = 5.875 ticks. You can confirm the

actual duration by literally measuring the height of ea in the drawing, but it is not possible for an application to

"know" the value of ea by using only the interval timer whose ticks are shown in Figure 7-5. The quantization error is

E = em - ea = 0.125 ticks, or about 1.7 percent of the 5.875-tick actual duration.

Figure 7-5. An interval timer is accurate for measuring durations of events that span many clock ticks

Now, consider the case when the duration of do_something is much closer to the timer resolution, as shown in Figure 7-
6. In the left-hand case, the duration of do_something spans one clock tick, so it has a measured duration of em = 1.

However, the event's actual duration is only ea = 0.25. (You can confirm this by measuring the actual duration in the

drawing.) The quantization error in this case is E = 0.75, which is a whopping 300% of the 0.25-tick actual duration.
In the right-hand case, the execution of do_something spans no clock ticks, so it has a measured duration of em = 0;

however, its actual duration is ea = 0.9375. The quantization error here is E = -0.9375, which is -100% of the 0.9375-

tick actual duration.

Figure 7-6. An interval timer is not accurate for measuring durations of events that span zero or only a few
clock ticks

Page 3 of 12O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

To describe quantization error in plain language:

Any duration measured with an interval timer is accurate only to within one unit of timer resolution.

More formally, the difference between any two digital clock measurements is an elapsed duration with quantization
error whose exact value cannot be known, but which ranges anywhere from almost -1 clock tick to almost +1 clock
tick. If we use the notation rx to denote the resolution of some timer called x, then we have:

xm - rx < xa < xm + rx

The quantization error E inherent in any digital measurement is a uniformly distributed random variable (see Chapter
11) with range -rx < E < rx, where rx denotes the resolution of the interval timer.

Whenever you see an elapsed duration printed by the Oracle kernel (or any other software), you must think in terms of
the measurement resolution. For example, if you see the statistic e=4 in an Oracle8i trace file, you need to understand
that this statistic does not mean that the actual elapsed duration of something was 4 cs. Rather, it means that if the
underlying timer resolution is 1 cs or better, then the actual elapsed duration of something was between 3 cs and 5 cs.
That is as much detail as you can know.

For small numbers of statistic values, this imprecision can lead to ironic results. For example, you can't actually even
make accurate comparisons of event durations for events whose measured durations are approximately equal. Figure
7-7 shows a few ironic cases. Imagine that the timer shown here is ticking in 1-centisecond intervals. This is behavior
that is equivalent to the Oracle8i practice of truncating digits of timing precision past the 0.01-second position.
Observe in this figure that event A consumed more actual elapsed duration than event B, but B has a longer measured
duration; C took longer than D, but D has a longer measured duration. In general, any event with a measured duration
of n + 1 may have an actual duration that is longer than, equal to, or even shorter than another event having a
measured duration of n. You cannot know which relationship is true.

Figure 7-7. Any duration measured with an interval timer is accurate only to within one unit of timer
resolution. Notice that events measured as n clock ticks in duration can actually be longer than events

measured as n + 1 ticks in duration

Page 4 of 12O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

An interval timer can give accuracy only to ±1 clock tick, but in practical application, this restriction does not
diminish the usefulness of interval timers. Positive and negative quantization errors tend to cancel each other over
large samples. For example, the sum of the quantization errors in Figure 7-6 is:

E1 + E2 = 0.75 + (-0.9375) = 0.1875

Even though the individual errors were proportionally large, the sum of the errors is a much smaller 16% of the sum
of the two actual event durations. In a several hundred SQL trace files collected at www.hotsos.com from hundreds of
different Oracle sites, we have found that positive and negative quantization errors throughout a trace file with
hundreds of lines tend to cancel each other out. Errors commonly converge to magnitudes smaller than ±10% of the
total response time measured in a trace file.

7.7.3 Complications in Measuring CPU Consumption

You may have noticed by now that your gettimeofday system call has much better resolution than getrusage. Although
the pseudocode in Example 7-3 makes it look like gettimeofday and getrusage do almost the same thing, the two
functions work in profoundly different ways. As a result, the two functions produce results with profoundly different
accuracies.

7.7.3.1 How gettimeofday works

The operation of gettimeofday is much easier to understand than the operation of getrusage. I'll use Linux on Intel
Pentium processors as a model for explaining. As I mentioned previously, the Intel Pentium processor has a hardware
time stamp counter (TSC) register that is updated on every hardware clock tick. For example, a 1-GHz CPU will
update its TSC approximately a billion times per second [Bovet and Cesati (2001) 139-141]. By counting the number
of ticks that have occurred on the TSC since the last time a user set the time with the date command, the Linux kernel
can determine how many clock ticks have elapsed since the Epoch. The result returned by gettimeofday is the result of
truncating this figure to microsecond resolution (to maintain the POSIX-compliant behavior of the gettimeofday
function).

7.7.3.2 How getrusage works

There are two ways in which an operating system can account for how much time a process spends consuming user-

Page 5 of 12O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

mode or kernel-mode CPU capacity:

Polling (sampling)

The operating system could be instrumented with extra code so that, at fixed intervals, each running process
could update its own rusage table. At each interval, each running process could update its own CPU usage
statistic with the estimate that it has consumed the entire interval's worth of CPU capacity in whatever state the
processes is presently executing in.

Event-based instrumentation

The operating system could be instrumented with extra code so that every time a process transitions to either
user running or kernel running state, it could issue a high-resolution timer call. Every time a process
transitions out of that state, it could issue another timer call and publish the microseconds' worth of difference
between the two calls to the process' rusage accounting structure.

Most operating systems use polling, at least by default. For example, Linux updates several attributes for each
process, including the CPU capacity consumed thus far by the process, upon every clock interrupt [Bovet and Cesati
(2001) 144-145]. Some operating systems do provide event-based instrumentation. Sun Solaris, for example, provides
this feature under the name microstate accounting [Cockroft (1998)].

With microstate accounting, quantization error is limited to one unit of timer resolution per state switch. With a high-
resolution timer (like gettimeofday), the total quantization error on CPU statistics obtained from microstate accounting
can be quite small. However, the additional accuracy comes at the cost of incrementally more measurement intrusion
effect. With polling, however, quantization error can be significantly worse, as you'll see in a moment.

Regardless of how the resource usage information is obtained, an operating system makes this information available
to any process that wants it via a system call like getrusage. POSIX specifies that getrusage must use microseconds as
its unit of measure, but—for systems that obtain rusage information by polling—the true resolution of the returned
data depends upon the clock interrupt frequency.

The clock interrupt frequency for most systems is 100 interrupts per second, or one interrupt every centisecond
(operating systems texts often speak in terms of milliseconds; 1 cs = 10 ms = 0.010 s). The clock interrupt frequency
is a configurable parameter on many systems, but most system managers leave it set to 100 interrupts per second.
Asking a system to service interrupts more frequently than 100 times per second would give better time measurement
resolution, but at the cost of degraded performance. Servicing interrupts even only ten times more frequently would
intensify the kernel-mode CPU overhead consumed by the operating scheduler by a factor of ten. It's generally not a
good tradeoff.

If your operating system is POSIX-compliant, the following Perl program will reveal its operating system scheduler
resolution [Chiesa (1996)]:

$ cat clkres.pl
#!/usr/bin/perl
use strict;
use warnings;
use POSIX qw(sysconf _SC_CLK_TCK);
my $freq = sysconf(_SC_CLK_TCK);
my $f = log($freq) / log(10);
printf "getrusage resolution %.${f}f seconds\n", 1/$freq;
$ perl clkres.pl
getrusage resolution: 0.01 seconds

With a 1-cs clock resolution, getrusage may return microsecond data, but those microsecond values will never contain
valid detail smaller than 1/100th (0.01) of a second.

The reason I've explained all this is that the quantization error of the Oracle c statistic is fundamentally different from

Page 6 of 12O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

the quantization error of an e or ela statistic. Recall when I wrote:

Any duration measured with an interval timer is accurate only to within one unit of timer resolution.

The problem with Oracle's c statistic is that the statistic returned by getrusage is not really a duration. That is, a CPU
consumption "duration" returned by getrusage is not a statistic obtained by taking the difference of a pair of interval
timer measurements. Rather:

� On systems with microstate accounting activated, CPU consumption is computed as potentially very many
short durations added together.

� On systems that poll for rusage information, CPU consumption is an estimate of duration obtained by a process
of polling.

Hence, in either circumstance, the quantization error inherent in an Oracle c statistic can be much worse than just one
clock tick. The problem exists even on systems that use microstate accounting. It's worse on systems that don't.

Figure 7-8 depicts an example of a standard polling-based situation in which the errors in user-mode CPU time
attribution add up to cause an over-attribution of time to a database call's response time. The sequence diagram in this
figure depicts both the user-mode CPU time and the system call time consumed by a database call. The CPU axis
shows clock interrupts scheduled one cs apart. Because the drawing is so small, I could not show the 10,000 clock
ticks on the non-CPU time consumer axis that occur between every pair of ticks on the CPU axis.

Figure 7-8. The way getrusage polls for CPU consumption can cause over-attributions of response time to an
individual database call

In response to the actions depicted in Figure 7-8, I would expect an Oracle9i kernel to emit the trace data shown in
Example 7-5. I computed the expected e and ela statistics by measuring the durations of the time segments on the sys
call axis. Because of the fine resolution of the gettimeofday clock with which e and ela durations are measured, the
quantization error in my e and ela measurements is negligible.

Example 7-5. The Oracle9i timing statistics that would be generated by the events depicted in Figure 7-8

WAIT #1: ...ela= 6250
WAIT #1: ...ela= 6875
WAIT #1: ...ela= 32500
WAIT #1: ...ela= 6250
FETCH #1:c=60000,e=72500,...

Page 7 of 12O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The actual amount of CPU capacity consumed by the database call was 2.5 cs, which I computed by measuring
durations physically in the picture. However, getrusage obtains its CPU consumption statistic from a process's resource
usage structure, which is updated by polling at every clock interrupt. At every interrupt, the operating system's
process scheduler tallies one full centisecond (10,000 µs) of CPU consumption to whatever process is running at the
time. Thus, getrusage will report that the database call in Figure 7-8 consumed six full centiseconds' worth of CPU
time. You can verify the result by looking at Figure 7-8 and simply counting the number of clock ticks that are
spanned by CPU consumption.

It all makes sense in terms of the picture, but look at the unaccounted-for time that results:

Negative unaccounted-for time means that there is a negative amount of "missing time" in the trace data. In other
words, there is an over-attribution of 39,375 µs to the database call. It's an alarmingly large-looking number, but
remember, it's only about 4 cs. The actual amount of user-mode CPU that was consumed during the call was only
25,000 µs (which, again, I figured out by cheating—by measuring the physical lengths of durations depicted in Figure
7-8).

7.7.4 Detection of Quantization Error

Quantization error E = em - ea is the difference between an event's actual duration ea and its measured duration em.

You cannot know an event's actual duration; therefore, you cannot detect quantization error by inspecting an
individual statistic. However, you can prove the existence of quantization error by examining groups of related
statistics. You've already seen an example in which quantization error was detectable. In Example 7-5, we could
detect the existence of quantization error by noticing that:

It is easy to detect the existence of quantization error by inspecting a database call and the wait events executed by

that action on a low-load system, where other influences that might disrupt the e c + Σela relationship are
minimized.

The following Oracle8i trace file excerpt shows the effect of quantization error:

WAIT #103: nam='db file sequential read' ela= 0 p1=1 p2=3051 p3=1
WAIT #103: nam='db file sequential read' ela= 0 p1=1 p2=6517 p3=1
WAIT #103: nam='db file sequential read' ela= 0 p1=1 p2=5347 p3=1
FETCH #103:c=0,e=1,p=3,cr=15,cu=0,mis=0,r=1,dep=2,og=4,tim=116694745

This fetch call motivated exactly three wait events. We know that the c, e, and ela times shown here should be related
by the approximation:

On a low-load system, the amount by which the two sides of this approximation are unequal is an indication of the
total quantization error present in the five measurements (one c value, one e value, and three ela values):

Page 8 of 12O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Given that individual gettimeofday calls account for only a few microseconds of measurement intrusion error on most
systems, quantization error is the prominent factor contributing to the 1-centisecond (cs) "gap" in the trace data.

The following Oracle8i trace file excerpt shows the simplest possible over-counting of elapsed time, resulting in a
negative amount of unaccounted-for time:

WAIT #96: nam='db file sequential read' ela= 0 p1=1 p2=1691 p3=1
FETCH #96:c=1,e=0,p=1,cr=4,cu=0,mis=0,r=1,dep=1,og=4,tim=116694789

Here, we have E = -1 cs:

In this case of a "negative gap" like the one shown here, we cannot appeal to the effects of measurement intrusion for
explanation; the measurement intrusion effect can create only positive unaccounted-for time. It might have been
possible that a CPU consumption double-count had taken place; however, this isn't the case here, because the value
ela= 0 means that no CPU time was counted in the wait event at all. In this case, quantization error has had a
dominating influence, resulting in the over-attribution of time within the fetch.

Although Oracle9i uses improved output resolution in its timing statistics, Oracle9i is by no means immune to the
effects of quantization error, as shown in the following trace file excerpt with E > 0:

WAIT #5: nam='db file sequential read' ela= 11597 p1=1 p2=42463 p3=1
FETCH #5:c=0,e=12237,p=1,cr=3,cu=0,mis=0,r=1,dep=2,og=4,tim=1023745094799915

In this example, we have E = 640 µs:

Some of this error is certainly quantization error (it's impossible that the total CPU consumption of this fetch was
actually zero). A few microseconds are the result of measurement intrusion error.

Finally, here is an example of an E < 0 quantization error in Oracle9i trace data:

WAIT #34: nam='db file sequential read' ela= 16493 p1=1 p2=33254 p3=1
WAIT #34: nam='db file sequential read' ela= 11889 p1=2 p2=89061 p3=1
FETCH #34:c=10000,e=29598,p=2,cr=5,cu=0,mis=0,r=1,dep=3,og=4,tim=1017039276445157

In this case, we have E = -8784 µs:

Page 9 of 12O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

It is possible that some CPU consumption double-counting has occurred in this case. It is also likely that the effect of
quantization error is a dominant contributor to the attribution of time to the fetch call. The 8,784-µs over-attribution is
evidence that the actual total CPU consumption of the database call was probably only about (10,000 - 8,784) µs =
1,216 µs.

7.7.5 Bounds of Quantization Error

The amount of quantization error present in Oracle's timing statistics cannot be measured directly. However, the
statistical properties of quantization error can be analyzed in extended SQL trace data. First, there's a limit to how
much quantization error there can be in a given set of trace data. It is easy to imagine the maximum quantization error
that a set of elapsed durations like Oracle's e and ela statistics might contribute. The worst total quantization error for a
sequence of e and ela statistics occurs when all the individual quantization errors are at their maximum magnitude and
the signs of the quantization errors all line up.

Figure 7-9 exhibits the type of behavior that I'm describing. This drawing depicts eight very-short-duration system
calls that happen to all cross an interval timer's clock ticks. The actual duration of each event is practically zero, but
the measured duration of each event is one clock tick. The total actual duration of the system calls shown is
practically zero, but the total measured duration is 8 clock ticks. For this set of n = 8 system calls, the total
quantization error is essentially nrx, where rx is, as described previously, the resolution of the interval timer upon

which the x characteristic is measured.

Figure 7-9. A worst-case type scenario for the accumulation of quantization error for a sequence of measured
durations

It shouldn't take you long to notice that the situation in Figure 7-9 is horribly contrived to suit my purpose of
illustrating a point. For things to work out this way in reality is extremely unlikely. The probability that n quantization
errors will all have the same sign is only 0.5n. The probability of having n = 8 consecutive negative quantization
errors is only 0.00390625 (that's only about four chances in a thousand). There's less than one chance in 1080 that n =

Page 10 of 12O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

265 statistics will all have quantization errors with the same sign.

For long lists of elapsed duration statistics, it is virtually impossible for all the quantization errors to "point in the
same direction." Yet, my contrivance in Figure 7-9 goes even further. It assumes that the magnitude of each
quantization error is maximized. The odds of this happening are even more staggeringly slim than for the signs to line
up. For example, the probability that the magnitude of each of n given quantization error values exceeds 0.9 is only (1
- 0.9)n. The odds of having each of n = 265 quantization error magnitudes exceed 0.9 are one in 10265.

For n quantization errors to all have the same sign and all have magnitudes greater than m, the probability is the
astronomically unlikely product of both probabilities I've described:

P(n quantization error values areall greater than m or all less than -m)= (0.5)n(1 - m)n

Quantization errors for elapsed durations (like Oracle e and ela statistics) are random numbers in the range:

-rx < E < rx

where rx is the resolution of the interval timer from which the x statistic (where x is either e or ela) is obtained.

Because negative and positive quantization errors occur with equal probability, the average quantization error for a
given set of statistics tends toward zero, even for large trace files. Using the central limit theorem developed by Pierre
Simon de Laplace in 1810, you can even predict the probability that quantization errors for Oracle e and ela statistics
will exceed a specified threshold for a trace file containing a given number of statistics.

I've begun work to compute the probability that a trace file's total quantization error (including the error contributed
by c statistics) will exceed a given threshold; however, I have not yet completed that research. The problem in front of
me is to calculate the distribution of the quantization error produced by c, which, as I've said already, is complicated
by the nature of how c is tallied by polling. I intend to document my research in this area in a future project.

Happily, there are several pieces of good news about quantization error that make not yet knowing how to quantify it
quite bearable:

� In the many hundreds of Oracle trace files that we have analyzed at www.hotsos.com, it has been extremely
uncommon for a properly collected (see Chapter 6) file's total unaccounted-for duration to exceed about 10%
of total response time.

� In spite of the possibilities afforded by both quantization error and CPU consumption double-counting, it is

What Does "One Chance in Ten to [Some Large Power]" Mean?

To put the probability "one chance in 1080" into perspective, realize that scientists estimate that there are
only about 1080 atoms in the observable universe (source:
http://www.sunspot.noao.edu/sunspot/pr/answerbook/universe.html,
http://www.sciencenet.org.uk/database/Physics/0107/p01539d.html, and others). This means that if you
could print 265 uniformly distributed random numbers between -1 and +1 on every atom in our universe,
you should expect that only one such atom would have all 265 numbers on it with all the same sign.

The other probability, "one chance in 10265," is even more mind-boggling to imagine. To do it, imagine
nesting universes three levels deep. That is, imagine that every one of the 1080 atoms in our universe is
itself a universe with 1080 universes in it, and that each of those universes contains 1080 atoms. At that
point, you'd have enough atoms to imagine one occurrence of a "one chance in 10240" atom. Even in
universes nested three levels deep, the odds of finding an atom with all 265 of its random numbers
exceeding 0.9 in magnitude would still be only one chance in 10,000,000,000,000,000,000,000,000.

Page 11 of 12O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-7-SECT-7

apparently extremely rare for a trace file to contain negative unaccounted-for time whose magnitude exceeds
about 10% of total response time.

� In cases where unaccounted-for time accounts for more than 25% of a properly collected trace file's response
time, the unaccounted-for time is almost always caused by one of the two remaining phenomena that I'll
discuss in the following sections.

� The presence of quantization error has not yet hindered our ability to properly diagnose the root causes of
performance problems by analyzing only Oracle extended SQL trace data, even in Oracle8i trace files in
which all statistics are reported with only one-centisecond resolution.

� Quantization error becomes even more of a non-issue in Oracle9i with the improvement in statistical
resolution.

Sometimes, the effect of quantization error can cause loss of faith in the validity of Oracle's trace data. Perhaps
nothing can be more damaging to your morale in the face of a tough problem than to gather the suspicion that the data
you're counting on might be lying to you. A firm understanding of the effects of quantization error is possibly your
most important tool in keeping your faith.

Page 12 of 12O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 7. Oracle Kernel Timings

7.8 Time Spent Not Executing

To understand a fourth cause of unaccounted-for time in a properly collected Oracle trace file, let's perform a brief
thought experiment. Imagine a program P that consumes exactly ten seconds of user-mode CPU time and produces an
output on your terminal. Imagine that you were to run this program in a loop on a system with one CPU. If you were
the only user connected to this system, you should expect response time of ten seconds for each execution of P.

If you were to observe the CPU utilization of this single-CPU system during your single-user repetitive execution of
P, you would probably notice your CPU running at 100% utilization for the duration of your job. But what if you
were to add a second instance of the P loop on the single-CPU system? In any ten-second elapsed time interval, there
is only ten seconds' worth of CPU capacity available on the single-CPU machine. We thus cannot expect to
accomplish two complete executions of a program that consumes ten seconds of capacity in one ten-second interval.
We would expect that the response time of each P would increase to roughly 20 seconds each. That's how long it
would take for one CPU to provide ten seconds' worth of CPU capacity to each of two competing processes, if its
capacity were to be dispensed fairly and in small time slices to the two competing processes.

7.8.1 Instrumenting the Experiment

Let's assume that we had instrumented our code in a manner similar to how the Oracle kernel does it, as I've shown in
Example 7-6.

Example 7-6. The program P instrumented to report on its own response time and total CPU capacity
consumption

e0 = gettimeofday;
c0 = getrusage;
P; # remember, P makes no system calls
c1 = getrusage;
e1 = gettimeofday;
e = e1 - e0;
c = (c1.stime + c1.utime) - (c0.stime + c0.utime);
printf "e=%.0fs, c=%.0fs\n", e, c;

Then we should expect approximately the timing output shown in Table 7-2 for each given concurrency level on a
single-CPU system. You should expect our program P to consume the same amount of total CPU capacity, regardless
of how busy the system is. But of course, since the CPU capacity of the system is being shared more and more thinly
across users as we increase the concurrency level, you should expect for the program to execute for longer and longer
elapsed times before being able to obtain the ten seconds of CPU time that it needs.

The table shows what we expected to see, but notice that we now have created a "problem with missing time" in some
of our measurements. Remember our performance model: the elapsed time of a program is supposed to approximately

Table 7-2. Expected output from running the timing-instrumented program P (which consumes ten seconds
of user-mode CPU time) at varying concurrency levels

Number of users running P concurrently Timing output

1 e=10s, c=10s

2 e=20s, c=10s

3 e=30s, c=10s

4 e=40s, c=10s

Page 1 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-7-SECT-8

equal the time spent consuming CPU capacity plus the time spent executing instrumented "wait events," as in:

However, even in the two-user case, this works out to:

20 10 + 0

We can use the substitution ela = 0 because we know our program executes no instrumented "wait events"
whatsoever. All our program does is consume some CPU capacity and then print the result. (And even the printf
statement can be eliminated as a suspect because the call to it occurs outside of the domain of the timer calls.) As you
can plainly see, c + Σela = 10 is a really lousy approximation of e = 20. Where did the "missing time" go? In our
Table 7-2 cases, the problem just keeps getting worse as user concurrency increases. Where have we gone wrong in
our instrumentation of P?

7.8.2 Process States and Transitions Revisited

The answer is easy to understand after looking again at Figure 7-1. Recall that even when a process is executing
happily along in user running state, a system clock interrupt occurs on most systems every 1/100th of a second. This
regularly scheduled interrupt transitions each running process into the kernel running state to service the interrupt.
Once in kernel running state, the process saves its current context and then executes the scheduler subroutine (see
Section 7.1.2 earlier in this chapter). If there is a process in the ready to run state, then the system's scheduling policy
may dictate that the running process must be preempted, and the ready to run process be scheduled and given an
opportunity to consume CPU capacity itself.

When this happens, note what happens to our originally running process. When it is interrupted, it is transitioned
immediately to kernel running state. Note in particular that the process does not get the chance to execute any
application code to see what time it is when this happens. When the process is preempted, it is transitioned to ready to
run state, where it waits until it is scheduled. When it is finally scheduled (perhaps only a mere 10 milliseconds later),
it spends enough time in kernel running state to reinstate its context, and then it returns to user running state, right
where it left off.

How did the preemption activity affect the timing data for the process? The CPU time spent in kernel running state
while the scheduler was preparing for the process's preemption counts as CPU time consumed by the process. But
time spent in ready to run state did not count as CPU time consumed by the process. However, when the process had
completed its work on P, the difference e=e1-e0 of course included all time spent in all states of the process state
transition diagram. The net effect is that all the time spent in ready to run state continues to tally on the e clock, but
it's not accounted for as CPU capacity consumption, or for anything else that the application is aware of for that
matter. It's as if the process had been conked on the head and then awoken, with no way to account for what happened
to the time spent out of consciousness.

This is what happens to each process as more concurrent processes were added to the mix shown in Table 7-2. Of
course, the more processes there were waiting in ready to run state, the more each process had to wait for its turn at
the CPU. The longer the wait, the longer the program's elapsed time. For three and four users, the unaccounted-for
time increases proportionally. It's simply a problem of a constant-sized pie (CPU capacity) being divvied up among
more and more pie-eaters (users running P). There's really nothing in need of "repair" about the instrumentation upon
P. What you need is to understand how to estimate how much of the unaccounted-for time is likely to be due to time
spent not executing.

The existence and exact size of this gap is of immense value to the Oracle performance analyst. The size of this gap
permits you to use extended SQL trace data to identify when performance problems are caused by excessive swapping
or time spent in the CPU run queue, as you shall see in one of the case studies in Chapter 12.

Page 2 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Page 3 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 7. Oracle Kernel Timings

7.9 Un-Instrumented Oracle Kernel Code

The final cause of missing time in a trace file that I'll cover is the category consisting of un-instrumented Oracle
kernel code. As you've now seen, Oracle provides instrumentation for database calls in the form of c and e data, which
represent total CPU consumption and total elapsed duration, respectively. For segments of Oracle kernel code that can
consume significant response time but not much CPU capacity, Oracle Corporation gives us the "wait event"
instrumentation, complete with an elapsed time and a distinguishing name for the code segment being executed.

Chapter 12 lists the number of code segments that are instrumented in a few popular releases of the Oracle kernel
since 7.3.4. Notice that the number grows significantly with each release listed in the table. There are, for example,
146 more instrumented system calls in release 9.2.0 than there are in release 8.1.7. Certainly, some of these newly
instrumented events represent new product features. It is possible that some new names in V$EVENT_NAME correspond
to code segments that were present but just not yet instrumented in an earlier Oracle kernel release.

7.9.1 Effect

When Oracle Corporation leaves a sequence of kernel instructions un-instrumented, the missing time becomes
apparent in one of two ways:

Missing time within a database call

Any un-instrumented code that occurs within the context of a database call will leave a gap between the
database call's elapsed duration (e) and the value of c + Σela for the call. Within the trace file, the phenomenon
will be indistinguishable from the time spent not executing problem that I described earlier. On systems that do
not exhibit much paging or swapping, the presence of a large gap (∆) in the following equation for an entire
trace file is an indicator of an un-instrumented time problem:

To envision this problem, imagine what would happen if a five-second database file read executed by a fetch
were un-instrumented. The elapsed time for the fetch (e) would include the five-second duration, but neither
the total CPU consumption for the fetch (c) nor the wait event durations (ela values) would be large enough to
account for the whole elapsed duration.

Missing time between database calls

Any un-instrumented code that occurs outside of the context of a database call cannot be detected in the same
manner as un-instrumented code that occurs within a database call. You can detect missing time between calls
in one of two ways. First, a sequence of between-call events with no intervening database calls is an indication
of un-instrumented Oracle kernel code path. Second, you can detect un-instrumented calls by inspecting tim
statistic values within a trace file. If you see "adjacent" tim values that are much farther apart in time than the
intervening database call and wait event lines can account for, then you've discovered this problem. A trace
file exhibits this issue if it has a large ∆ value in the formula in which R denotes the known response time for
which the trace file was supposed to account:

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-7-SECT-9

Oracle bug number 2425312 is one example of this problem. It is a case in which entire database calls
executed through the PL/SQL remote procedure call (RPC) interface emit no trace data whatsoever. The result
is a potentially enormous gap in the time accounting within a trace file.

In practice you may never encounter a situation in which un-instrumented system calls will consume an important
proportion of a program's elapsed time. We encounter the phenomenon at a rate of fewer than five per thousand trace
files at www.hotsos.com. One case of un-instrumented database activity is documented as bug number 2425312 at
Oracle MetaLink. You may encounter this bug if you trace Oracle Forms applications with embedded (client-side)
PL/SQL. You will perhaps encounter other cases in which un-instrumented time materially affects your analysis, but
those cases will be rare.

7.9.2 Trace Writing

You will encounter at least one un-instrumented system call every time you use SQL trace, although its performance
impact is usually small. It is the write call that the Oracle kernel uses to write SQL trace output to the trace file. Using
strace allows you to see quite plainly how the Oracle kernel writes each line of data to a trace file. Of the several
hundred extended SQL trace files collected at www.hotsos.com by the time of this writing, fewer than 1% exhibit
accumulation of unaccounted-for time that might be explained by slow trace file writing. However, you should follow
these recommendations to reduce the risk that the very act of tracing an application program will materially degrade
the performance of an application:

� Check with Oracle MetaLink to ensure that your system is not susceptible to Oracle kernel bugs that might
unnecessarily impede the performance of trace file writing. For example, bug number 2202613 affects the
performance of trace file writing on some Microsoft Windows 2000 ports. Bug number 1210242 needlessly
degrades Oracle performance while tracing is activated.

� Place your USER_DUMP_DEST and BACKGROUND_DUMP_DEST directories on efficient I/O channels. Don't
write trace data to your root filesystem or the oldest, slowest disk drive on your system. Although the outcome
of the diagnostic process will often be significant performance improvement, no analyst wants to be accused
of even temporarily degrading the performance of an application.

� Keep load that competes with trace file I/O as low as possible during a trace. For example, avoid tracing more
than one session at a time to the same I/O device. Exceptions include application programs that naturally emit
more than one trace file, such as parallel operations or any program that distributes workload over more than
one Oracle server processes.

Don't let the overhead of writing to trace files deter you from using extended SQL trace data as a performance
diagnostic tool. Keep the overhead in perspective. The potential overhead is not noticeable in most cases. Even if the
performance overhead were nearly unbearable, the overhead of tracing a program once is a worthwhile investment if
the diagnosis results in either of the following outcomes:

� You can repair the program under analysis, resulting in significant conservation of system capacity and a
significant reduction in end-user response time.

� You can prove that the program under analysis performs as well as it can, and thus that further optimization
investment will be futile.

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 7. Oracle Kernel Timings

7.10 Exercises

1. Install a system call trace utility like strace on your system. Use it to trace an Oracle kernel process. In a
separate window, view the SQL trace output as it is emitted (using tail -f or a similar command). What timing
calls does the Oracle kernel make on your system? In what sequence are the timing calls made? Does your
system's behavior resemble the behavior described in Example 7-2?

2. Run the program listed in Example 7-4 on your system. What is the average measurement intrusion effect of
one gettimeofday call on your system?

3. The Perl program in Example 7-7 saves the values returned from a rapid-fire sequence of times system calls. It
traverses the list of saved values and prints a value only if it differs from the prior value in the list. What, if
anything, does running this program indicate about the resolution of CPU resource accounting on your
system?

Example 7-7. A Perl program that executes a rapid-fire sequence of times system calls

#!/usr/bin/perl
use strict;
use warnings;
use IO::File;
autoflush STDOUT 1;
my @times = (times)[0];
while ((my $t = (times)[0]) - $times[0] < 1) {
 push @times, $t;
}
print scalar @times, " distinct times\n";
my $prior = '';
for my $time (@times) {
 print "$time\n" if $time ne $prior;
 $prior = $time;
}

4. At www.hotsos.com, we have several millions of lines of Oracle8i trace data that resemble the following:

FETCH #1:c=1,e=0,p=0,cr=0,cu=0,mis=0,r=10,dep=0,og=3,tim=17132884

Explain how this can occur.

5. In Oracle9i, trace file lines like the following occur as frequently as the phenomenon described in the previous
exercise:

PARSE #7:c=10000,e=2167,p=0,cr=0,cu=0,mis=1,r=0,dep=1,og=0,tim=1016096093915846

Explain how this can occur. How different is this phenomenon from the one described in the previous
exercise?

6. Write a program to test the thought experiment shown in Example 7-6. Explain any major differences between
its output and the output of the thought experiment shown in Table 7-2.

7. Trace client programs that use different Oracle interfaces on your system, such as:

� PL/SQL RPC calls issued by client-side PL/SQL within Oracle Forms applications

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-7-SECT-10

� Java RMI calls between the client VM and server VM

Do they result in unexpectedly large amounts of unaccounted-for time?

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part II: Reference

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-8

Chapter 8. Oracle Fixed View Data

Chances are that before you picked up this book, you had spent far more time assessing V$ data than you ever spent
looking at raw trace data. Each of us is taught either overtly or covertly that to be competent Oracle performance
analysts, we have to know lots of things about Oracle's fixed views. Fixed views are pseudo-tables that begin with a
prefix like V$ or GV$, or better yet X$. A whole cottage industry seems to exist with the sole purpose of providing
updated posters that depict the complicated relationships among the almost 500 views described in
V$FIXED_VIEW_DEFINITION.

Some people who inquire about www.hotsos.com courses find it strange that we devote comparatively little time to
discussion of Oracle's fixed views in those courses. Oracle fixed views indeed provide useful data that we need on
occasion to supplement our performance improvement projects. But in hundreds of cases in which my staff and I have
resolved performance problems since 1999, we have used properly scoped extended SQL trace data and nothing else.

Throughout the year 2000, www.hotsos.com invested into two concurrent research projects. One was to construct an
optimized performance improvement method based upon extended SQL trace data. The other was to create an
optimized performance improvement method based upon fixed view data. The results of the two projects surprised
me. I entered the two projects assuming that of course a method based upon Oracle fixed view data would be superior
to any method based upon "mere" trace data. However, we ran into roadblock after roadblock with the fixed view
data. I heavily invested my own time into designing workarounds for various deficiencies inherent in Oracle V$ data,
in an effort to bring analysis quality to par with our method based upon trace data.

One day in June 2000, I consulted Oracle's extended SQL trace file for about the umpteenth time to confirm or refute
whether my hundred-line fixed view analyzer workaround-of-the-day was working correctly. Until that day, we had
used our trace file analysis software as a yardstick for our fixed view analysis software. But on that day, we promoted
the trace file analyzer to our primary analysis tool. We dropped our fixed view analyzer project, and we've never
looked back. This chapter begins with a description of some of the difficulties that Oracle's fixed view data imposes
upon you. The latter part of the chapter reviews some common fixed view queries and assesses some of their strengths
and weaknesses.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 8. Oracle Fixed View Data

8.1 Deficiencies of Fixed View Data

Oracle's fixed views are invaluable. You'll see several good uses of V$ queries soon. For example, for every line of
data that the Oracle kernel emits to a trace file, there can be thousands of operations that you'll never discover unless
you examine your V$ data. However, Oracle's V$ fixed views contain several deficiencies which many Oracle
performance analysts are not aware of. The following sections describe the deficiencies that my colleagues and I have
encountered in attempts to use Oracle fixed view data as our primary performance-diagnostic data source.

8.1.1 Too Many Data Sources

It is possible to construct an approximate resource profile for a specified session with queries of fixed data. This
chapter shows how. However, the resource profile is just the tip of the data you really need, and you won't know what
drill-down you'll need next until after you've assessed the resource profile. Consequently, the only way to ensure that
you'll have everything you might need is to collect everything you might need for the targeted time scope and action
scope. Doing this with fixed view data is virtually impossible.

8.1.2 Lack of Detail

The documented Oracle fixed views make it intensely difficult to acquire several types of detailed data that are easy to
acquire from extended SQL trace data. Using only Oracle's fixed views, for example, it is very difficult to:

� Observe trends in durations of individual Oracle kernel actions

� Attribute individual I/O calls to their target devices

� Attribute capacity consumption to individual database calls

� Determine recursion relationships among database calls

The vast majority of Oracle's fixed views reveal only statistics that are aggregated either by session (for example,
V$SESSTAT) or by instance (for example, V$SYSSTAT). Aggregate statistics introduce unnecessary analysis
complexity, because of course aggregates conceal details.

X$TRACE and V$SESSION_WAIT are notable exceptions that reveal in-process data. However, using X$TRACE at least
through Oracle9i release 2 is a bad idea because it is undocumented, unsupported, and unreliable. V$SESSION_WAIT is
of course supported, but to acquire the same level of detail from V$SESSION_WAIT as you can get from an Oracle7
extended SQL trace file, you would have to poll the view at a rate of more than 100 queries per second. You can't do
this with SQL (see Section 8.1.3). To acquire the same level of detail from V$SESSION_WAIT as you can get from an
Oracle9i extended SQL trace file, you would have to poll at a rate of 1,000,000 queries per second.

8.1.3 Measurement Intrusion Effect of Polling

Using SQL to poll Oracle fixed views imposes an overwhelming measurement intrusion effect upon the system. It is
simply impossible to use SQL to acquire fine granularity operational statistics in real time. Example 8-1 illustrates the
problem. Typical behavior on our 800-MHz Linux server is fewer than 50 polls per second on a 50-row V$SESSION
fixed view:

$ perl polling.pl --username=system --password=manage r
 sessions 50

Page 1 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

 polls 1000
 elapsed 21.176
 user-mode CPU 14.910
kernel-mode CPU 0.110
 polls/sec 47.223

The verdict: you can't use SQL to poll even one small V$ view a hundred times per second.

Example 8-1. A Perl program that demonstrates a fundamental limitation of polling with SQL. Note that the
program carefully parses only once and also uses array fetching instead of fetching one row at a time

#!/usr/bin/perl

$Header: /home/cvs/cvm-book1/polling/polling.pl, v1.6 2003/04/23 03:49:37
Cary Millsap (cary.millsap@hotsos.com)

use strict;
use warnings;
use DBI;
use DBD::Oracle;
use Getopt::Long;
use Time::HiRes qw(gettimeofday);

my @dbh; # list of database connection handles
my $dbh; # "foreground" session database connection handle
my $sth; # Oracle statement handle

my $hostname = "";
my $username = "/";
my $password = "";
my %attr = (
 RaiseError => 1,
 AutoCommit => 0,
);
my %opt = (
 sessions => 50, # number of Oracle sessions
 polls => 1_000, # number of polls on the v$ object
 hostname => "",
 username => "/",
 password => "",
 debug => 0,
);

Get command line options and arguments.
GetOptions(
 "sessions=i" => \$opt{sessions},
 "polls=i" => \$opt{polls},
 "debug" => \$opt{debug},
 "hostname=s" => \$opt{hostname},
 "username=s" => \$opt{username},
 "password=s" => \$opt{password},
);

Fill v$session with "background" connections.
for (1 .. $opt{sessions}) {
 push @dbh, DBI->connect("dbi:Oracle:$opt{hostname}", $opt{username}, $opt{password}, \
%attr);
 print "." if $opt{debug};
}
print "$opt{sessions} sessions connected\n" if $opt{debug};

Execute the query to trace.
$dbh = DBI->connect("dbi:Oracle:$opt{hostname}", $opt{username}, $opt{password}, \%attr);
$sth = $dbh->prepare(q(select * from v$session));
my $t0 = gettimeofday;
my ($u0, $s0) = times;
for (1 .. $opt{polls}) {
 $sth->execute();
 $sth->fetchall_arrayref;
}
my ($u1, $s1) = times;
my $t1 = gettimeofday;
$dbh->disconnect;

Page 2 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

print "$opt{polls} polls completed\n" if $opt{debug};

Print test results.
my $ela = $t1 - $t0;
my $usr = $u1 - $u0;
my $sys = $s1 - $s0;
printf "%15s %8d\n", "sessions", $opt{sessions};
printf "%15s %8d\n", "polls", $opt{polls};
printf "%15s %8.3f\n", "elapsed", $ela;
printf "%15s %8.3f\n", "user-mode CPU", $usr;
printf "%15s %8.3f\n", "kernel-mode CPU", $sys;
printf "%15s %8.3f\n", "polls/sec", $opt{polls}/$ela;

Disconnect "background" connections from Oracle.
for my $c (@dbh) {
 $c->disconnect;
 print "." if $opt{debug};
}
print "$opt{sessions} sessions disconnected\n" if $opt{debug};

_ _END_ _

=head1 NAME

polling - test the polling rate of SQL upon V$SESSION

=head1 SYNOPSIS

polling
 [--sessions=I<s>]
 [--polls=I<p>]
 [--hostname=I<h>]
 [--username=I<u>]
 [--password=I<p>]
 [--debug=I<d>]

=head1 DESCRIPTION

B<polling> makes I<s> Oracle connections and then issues I<p> queries of
B<V$SESSION>. It prints performance statistics about the polls, including
the elapsed duration, the user- and kernel-mode CPU consumption, and the
number of polls per second exeucted. The program is useful for
demonstrating the polling capacity of an Oracle system.

=head2 Options

=over 4

=item B<--sessions=>I<s>

The number of Oracle connections that are created before the polling
begins. The default value is 50.

=item B<--polls=>I<p>

The number of queries that sill be executed. The default value is 1,000.

=item B<--hostname=>I<u>

The name of Oracle host. The default value is "" (the empty string).

=item B<--username=>I<u>

The name of the Oracle schema to which B<polling> will connect. The
default value is "/".

=item B<--password=>I<p>

The Oracle password that B<polling> will use to connect. The default value
is "" (the empty string).

=item B<--debug=>I<d>

Page 3 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

When set to 1, B<polling> dumps its internal data structures in addition
to its normal output. The default value is 0.

=back

=head1 EXAMPLES

Use of B<polling> will resemble the following example:

 $ perl polling.pl --username=system --password=manager
 sessions 50
 polls 1000
 elapsed 15.734
 user-mode CPU 7.111
 kernel-mode CPU 0.741
 polls/sec 63.557

=head1 AUTHOR

Cary Millsap (cary.millsap@hotsos.com)

=head1 COPYRIGHT

Copyright (c) 2003 by Hotsos Enterprises, Ltd. All rights reserved.

8.1.4 Difficulty of Proper Action-Scoping

Most V$ data sources have no session label attribute. To see why this is a problem, imagine that the resource profile
reveals that waits for latch free dominate its response time. V$LATCH shows that two different latches were accessed
heavily during the user action's time scope. Which latch is responsible for the user action's response time? It could be
one, the other, or even both. How will you determine whether the session you are monitoring is responsible for
motivating the activity, or if it's just some other session that happened to be running at the same time? Learning the
answers with only properly time-scoped V$ data at your disposal consumes significantly more analysis time than
learning the answers from extended SQL trace data.

A similar argument cuts the other way as well. The Oracle kernel emits a latch free wait event only when a latch
acquisition attempt spins and fails, resulting in a system call in which the Oracle kernel process voluntarily yields the
CPU to some other process. Nothing appears in the trace file when a latch acquisition attempt results in an acquisition,
even if the Oracle kernel process had to execute many spin iterations to acquire it [Millsap (2001c)].

The combination of extended SQL trace data and good V$ tools like Tom Kyte's test harness (described later in this
chapter) provide much more capability than either a trace file or V$ output by itself.

8.1.5 Difficulty of Proper Time-Scoping

One of the nagging problems that motivated me to abandon the big www.hotsos.com fixed view diagnosis project was
the incessant difficulty in acquiring properly time-scoped data. If an observation interval boundary occurs in the
middle of an event, it is important to know how much of the event's duration should be included within the interval
and how much should be discarded. For example, if you query V$SESSION_WAIT at time t and find a db file scattered
read event in progress, then how can you determine how long the event has been executing? It appears impossible to
know to within 0.01 seconds unless you can poll at a rate of 100 or more times per second.

Another annoyance is the problem of what to do if a session disconnects before you can collect all the fixed view data
you needed at the end of the desired observation interval. If you don't query the various V$ views that contain session
information before the disconnect takes place, then the data you need are lost forever. Again, fine-resolution polling
would help solve this problem, but fine-resolution requires that you access Oracle shared memory contents through
means other than SQL.

8.1.6 Susceptibility to Overflow and Other Errors

Page 4 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Another nagging problem is fixed views' susceptibility to overflow errors. The problem is that an n-bit counter
variable can store only 2n-1 distinct values. When an n-bit unsigned integer in the Oracle kernel takes on the value 2n-
1, then the next time it is incremented, its value becomes zero. Overflow errors cause a supposed "accumulator"
statistic to have a smaller value than it had at some time in the past. If an Oracle kernel developer has chosen to regard
a counter variable as a signed integer, then you may notice values that turn negative after getting very large. To repair
overflow data is not complicated, but it's one more thing that analyses of V$ data sometimes require and that analyses
of extended SQL trace data don't.

Other aggravations with erroneous statistics include issues with the Oracle statistic called CPU used by this session,
including Oracle bug numbers 2327249, 2707060, 1286684, and others. When you can't trust your system's
measurements of what should be the dominant consumer of response time on an optimized system, it puts a big dent
in your progress.

8.1.7 Lack of Database Call Duration Data

Search Oracle's V$ view definitions and I believe you won't find an equivalent of the e statistic anywhere. Without
knowing a database call's elapsed duration, it is impossible even to detect the existence of unaccounted-for time that
should be attributed to the call. Of course, if you can't prove that unaccounted-for time even exists, then you certainly
can't measure its duration. As I describe in Chapter 6, Chapter 9, and Chapter 12, quantifying a user action's
unaccounted-for time is the key to being able to positively identify, for example, paging or swapping problems from
viewing only operating system-independent Oracle data.

The absence of database call duration data from Oracle's V$ data creates an irony that I hope you'll enjoy with me.
Some analysts regard the "problem of missing time" in trace files as proof that V$ data provide superior value to the
performance analyst. But, remember, Oracle V$ data come from the same system calls that extended SQL trace data
come from (the ones I explained in Chapter 7). Thus, Oracle V$ data suffer from the same "missing time" problems
from which extended SQL trace files allegedly "suffer." Proving that V$ data are superior to extended SQL trace data
because of the "missing time" issue is analogous to proving that it's safer to be in a room with a hungry bear if you'll
just close your eyes.

8.1.8 Lack of Read Consistency

As if the problems you've read about so far weren't enough, the problem of read consistency was something of a
technical sword in the heart of our ambition to create the "mother of all V$ analyzers." The root of the read
consistency problem is that Oracle makes performance data available via peeks into shared memory, not through
standard tables. Thus, Oracle fixed views don't use the standard Oracle read consistency model that uses undo blocks
to construct a read-consistent image of a block at a specified point in the past.

You have two choices for obtaining Oracle V$ data: either you can peek into shared memory yourself, or you can use
SQL to peek via Oracle's published V$ fixed views. The peek-into-shared-memory yourself approach has the much
touted benefit of avoiding a tremendous amount of extra SQL processing workload on your Oracle server (which is
presumably already burdened with a performance problem). However, neither approach provides a read-consistent
image of your performance data. When we query a V$ view, the output does not represent the system at a point in
time. Rather, the output slurs over the duration of the query.

Reading a large chunk of memory is not an atomic operation. To construct a read-consistent image of a memory
segment, you must either lock the segment for the duration of the query, or you must use a more complicated read
consistency mechanism like the one the Oracle kernel uses for real tables. Otherwise, the output of the query may
represent a system state that has never actually existed. Figure 8-1 illustrates the problem. A scan of a memory
segment begins at time t0 and concludes at time t3. A dark box indicates a memory location whose contents are being

changed at a given time. A lightly shaded box indicates the memory location whose contents are being copied to the

Oracle Corporation can't impose the overhead of read consistency upon its fixed views.
To do so would intensify the overhead of accessing those views so much that it would
render the V$ views practically useless.

Page 5 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

output stream at a given time. Because reading a large chunk of memory is not an atomic operation, the output stream
can contain a state that has never actually existed in memory at any time in the past.

Figure 8-1. The problem caused by lack of read consistency: an output stream can contain a state that has
never actually existed in memory at any time in the past

The magnitude of the read consistency problem increases with the execution duration of a snapshot. Imagine that
fetching data for 2,000 Oracle sessions from a simple query upon V$SESSION motivates the sequence of events
depicted in Table 8-1. The query's result set is not a snapshot, but a collection of rows that all represent slightly
different system states smeared across the 0.40 seconds of the query's total elapsed time.

Of course, the result of a query without a read-consistency guarantee is prone to be incorrect. The problem
compounds when you attempt to include multiple data sources in your snapshots. Imagine that you have decided that
each operational data snapshot you need contains data from each of the following Oracle fixed views:

V$BH
V$DB_OBJECT_CACHE
V$FILESTAT
V$LATCH
V$LIBRARYCACHE
V$LOCK
V$OPEN_CURSOR
V$PARAMETER
V$PROCESS
V$ROLLSTAT
V$ROWCACHE
V$SESSION
V$SESSION_EVENT
V$SESSION_WAIT
V$SESSTAT
V$SQL
V$SQLTEXT
V$TIMER
V$TRANSACTION
V$WAITSTAT

Table 8-1. The sequence of events motivated by a query of V$SESSION

Time Event

0:00:00.00 select sid from v$session; there are 2,000 sessions connected

0:00:00.01 First row of output is returned

0:00:00.12 Session number 1297 disconnects

0:00:00.26
The location in shared memory that contained information for session number 1297 no longer contains
information about session 1297; hence, no data about session number 1297 (which was active at
10:00:00.00) is returned

0:00:00.40 Final row of output is returned

Page 6 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-8-SECT-1

You would love to believe that all of the data collected during a single snapshot actually represent a single instant in
time. However, it's not true. For fixed views with only a small number of relatively nonvolatile rows, this is not a big
problem. But for fixed views with thousands of rows, you can create strange results with simple SELECT statements.
The problem is even worse if you have such a long list of fixed views across which you wish to construct a snapshot.
If these were real Oracle tables, you would probably use the following technique to force several queries to behave as
though they were participants in a single atomic event:

set transaction readonly;
select * from v$bh;
select * from v$db_object_cache;
...
select * from v$waitstat;
commit;

However, this strategy won't work for V$ fixed views because they're not real tables. Regardless of how you collect
the data for your snapshot, the data will be slurred over the duration of the snapshot collection query set. The time-
state of the first row of the V$BH query will differ from the time-state of the last row of the V$WAITSTAT query by the
accumulated duration of these statements' executions. The duration in this example will likely be more than a whole
second. No program can scan gigabytes or even hundreds of megabytes of memory in a single atomic operation.

It is very difficult to do time-based correlation among data sources, even for data collected within a single snapshot.
The problem, of course, takes on even more complexity if you introduce operating system statistics into the collected
data set.

Page 7 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 8. Oracle Fixed View Data

8.2 Fixed View Reference

In spite of their deficiencies, Oracle's fixed views provide value to the performance analyst in many situations. For
this section, I describe a few Oracle fixed views that are important for you to understand in your role of performance
analyst. All object descriptions shown were taken from an Oracle release 9.0.1.0.0 system.

8.2.1 V$SQL

Probably the most important fixed view for the performance analyst is V$SQL. This view shows several important
attributes of the SQL statements whose header information currently reside in the shared pool. The columns in this
view are as follows:

SQL> desc v$sql
 Name Null? Type
 -------------------------------------- -------- --------------------------
 SQL_TEXT VARCHAR2(1000)
 SHARABLE_MEM NUMBER
 PERSISTENT_MEM NUMBER
 RUNTIME_MEM NUMBER
 SORTS NUMBER
 LOADED_VERSIONS NUMBER
 OPEN_VERSIONS NUMBER
 USERS_OPENING NUMBER
 EXECUTIONS NUMBER
 USERS_EXECUTING NUMBER
 LOADS NUMBER
 FIRST_LOAD_TIME VARCHAR2(19)
 INVALIDATIONS NUMBER
 PARSE_CALLS NUMBER
 DISK_READS NUMBER
 BUFFER_GETS NUMBER
 ROWS_PROCESSED NUMBER
 COMMAND_TYPE NUMBER
 OPTIMIZER_MODE VARCHAR2(10)
 OPTIMIZER_COST NUMBER
 PARSING_USER_ID NUMBER
 PARSING_SCHEMA_ID NUMBER
 KEPT_VERSIONS NUMBER
 ADDRESS RAW(4)
 TYPE_CHK_HEAP RAW(4)
 HASH_VALUE NUMBER
 PLAN_HASH_VALUE NUMBER
 CHILD_NUMBER NUMBER
 MODULE VARCHAR2(64)
 MODULE_HASH NUMBER
 ACTION VARCHAR2(64)
 ACTION_HASH NUMBER
 SERIALIZABLE_ABORTS NUMBER
 OUTLINE_CATEGORY VARCHAR2(64)
 CPU_TIME NUMBER
 ELAPSED_TIME NUMBER
 OUTLINE_SID NUMBER
 CHILD_ADDRESS RAW(4)
 SQLTYPE NUMBER
 REMOTE VARCHAR2(1)
 OBJECT_STATUS VARCHAR2(19)
 LITERAL_HASH_VALUE NUMBER
 LAST_LOAD_TIME VARCHAR2(19)
 IS_OBSOLETE VARCHAR2(1)

With V$SQL, you can rank SQL statements in your system by the amount of work they do, or by whatever measure of
efficiency you like (see Section 8.3.3 later in this chapter). By querying V$SQLTEXT_WITH_NEWLINES, you can see the

Page 1 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

entire text of a SQL statement, not just the first 1,000 bytes that are stored in V$SQL.SQL_TEXT:

select sql_text from v$sqltext_with_newlines
where hash_value=:hv and address=:addr
order by piece

You can even sense the presence of how distinct SQL texts might have been able to make more effective use of bind
variables:

select count(*), min(hash_value), substr(sql_text,1,:len) from v$sql
group by substr(sql_text,1,:len)
having count(*)>=:threshold
order by 1 desc, 3 asc

In this query, :len specifies a SQL text prefix length that defines whether two distinct statements are "similar" or not.
For example, if :len=8, then the strings select salary,... and select s .program,... are similar, because their first eight
characters are the same. Values like 32, 64, and 128 usually produce interesting results. The value of :threshold
determines your threshold of tolerance for similar statements in your library cache. You'll normally want to
set :threshold to at least three, because having only two similar SQL statements in your library cache is not really a
problem. If your system is running amok in unshared SQL, then you'll want to set :threshold to a larger value so that
you can focus on fixing a few unshared statements at a time.

8.2.2 V$SESS_IO

V$SESS_IO is a simple fixed view that allows you to measure the logical and so-called physical I/O that has been
generated for a session:

SQL> desc v$sess_io
 Name Null? Type
 -------------------------------------- -------- --------------------------
 SID NUMBER
 BLOCK_GETS NUMBER
 CONSISTENT_GETS NUMBER
 PHYSICAL_READS NUMBER
 BLOCK_CHANGES NUMBER
 CONSISTENT_CHANGES NUMBER

The statistics in V$SESS_IO map nicely to extended SQL trace statistics:

BLOCK_GETS

The equivalent of the cu statistic in raw trace data.

CONSISTENT_GETS

The equivalent of the cr statistic in raw trace data.

PHYSICAL_READS

The equivalent of the p statistic in raw trace data.

The number of logical I/Os (LIOs) is the sum of the values of BLOCK_GETS and CONSISTENT_GETS. When an Oracle
session consumes massive amounts of CPU capacity with only intermittent executions of instrumented Oracle wait
events, the session's trace will appear to "sit still." With repeated executions of the following query, you can observe
whether a session that is running but emitting no trace data is executing LIO calls:

Page 2 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

select block_gets, consistent_gets from v$sess_io where sid=:sid

8.2.3 V$SYSSTAT

V$SYSSTAT is one of the first fixed views I remember using. Its structure is simple:

SQL> desc v$sysstat
 Name Null? Type
 -------------------------------------- -------- --------------------------
 STATISTIC# NUMBER
 NAME VARCHAR2(64)
 CLASS NUMBER
 VALUE NUMBER

Each row in V$SYSSTAT contains an instance-wide statistic. Most statistics are tallies of operations that have occurred
since the most recent instance startup. V$SYSSTAT rows are subject to overflow errors.

The denormalized structure of V$SYSSTAT makes it easy to find out what the system has done since the most recent
instance startup, without having to do a join. The following query executed in Oracle9i displays roughly 250 statistics
that describe what the entire instance has done over its lifespan:

select name, value from v$sysstat order by 1

The following query lists the values of several statistics related to parsing:

select name, value from v$sysstat where name like 'parse%'

8.2.4 V$SESSTAT

As I described in Chapter 3, the system-wide scope is probably the incorrect action scope for your diagnostic data
collection. V$SESSTAT contains the same statistics as V$SYSSTAT, except at the session level:

SQL> desc v$sesstat
 Name Null? Type
 -------------------------------------- -------- --------------------------
 SID NUMBER
 STATISTIC# NUMBER
 VALUE NUMBER

Each row in V$SESSTAT contains a tally of how many times a statistic has been incremented since the creation of a
specified session.

V$SESSTAT is not denormalized like V$SYSSTAT, so finding a statistic by name requires a join with V$STATNAME. The
following query lists all the statistics that have aggregated for a session since its birth:

select name, value
from v$statname n, v$sesstat s
where sid=:sid and n.statistic#=s.statistic#
and s.value>0
order by 2

The following query lists the approximate number of centiseconds' worth of CPU capacity consumed by a given
session:

select name, value
from v$statname n, v$sesstat s
where sid=:sid and n.statistic#=s.statistic#
and n.name='CPU used by this session'

8.2.5 V$SYSTEM_EVENT

Page 3 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The V$SYSTEM_EVENT fixed view records aggregated statistics about instrumented code paths that the Oracle kernel
has executed since its most recent instance startup:

SQL> desc v$system_event
 Name Null? Type
 -------------------------------------- -------- --------------------------
 EVENT VARCHAR2(64)
 TOTAL_WAITS NUMBER
 TOTAL_TIMEOUTS NUMBER
 TIME_WAITED NUMBER
 AVERAGE_WAIT NUMBER
 TIME_WAITED_MICRO NUMBER

Each row in V$SYSTEM_EVENT contains information about the calls of a given event for the lifespan of the instance.

On Oracle7 and Oracle8i kernels, you can obtain resource consumption statistics about everything but CPU
consumption with following query:

select event, total_waits, time_waited/100 t
from v$system_event
order by 3 desc

With Oracle9i kernels, you can obtain the same statistics displayed with microsecond precision by using the following
query:

select event, total_waits, time_waited_micro/1000000 t
from v$system_event
order by t desc

8.2.6 V$SESSION_EVENT

Once again, the system-wide scope is often the incorrect scope for diagnostic data collection. V$SESSION_EVENT
provides the ability to collect properly session-scoped diagnostic data for Oracle kernel code paths:

SQL> desc v$session_event
 Name Null? Type
 -------------------------------------- -------- --------------------------
 SID NUMBER
 EVENT VARCHAR2(64)
 TOTAL_WAITS NUMBER
 TOTAL_TIMEOUTS NUMBER
 TIME_WAITED NUMBER
 AVERAGE_WAIT NUMBER
 MAX_WAIT NUMBER
 TIME_WAITED_MICRO NUMBER

Each row in V$SESSION_EVENT contains information about the executions of a given segment of Oracle kernel code
(a "wait event") for a given session since its birth. Thus, the information in V$SESSION_EVENT is an aggregation of the
data that appears in extended SQL trace output:

EVENT

The name of an Oracle wait event. Note that each EVENT value corresponds to a nam value in the WAIT lines of
Oracle's extended SQL trace data.

You might notice that there is no MAX_WAIT column in V$SYSTEM_EVENT. You can add
this useful column to the definition of V$SYSTEM_EVENT, if you like, by following the
instructions presented in [Lewis (2001b) 577-581].

Page 4 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

TOTAL_WAITS

The number of WAIT lines with nam='x', where x is the value of the row's EVENT.

TIME_WAITED

The sum of the ela values for all WAIT lines with nam='x', where x is the value of the row's EVENT.

The V$SESSION_EVENT fixed view contains no record of a session's CPU capacity consumption. You have to go to
V$SESSTAT for that.

The following query will display information about the wait events that a given Oracle8i session has executed over its
lifespan:

select event, total_waits, time_waited/100 t
from v$session_event
where sid=:sid
order by t desc

The following query will display information about the wait events that a given Oracle9i session has executed over its
lifespan:

select event, total_waits, time_waited_micro/1000000 t
from v$session_event
where sid=:sid
order by t desc

8.2.7 V$SESSION_WAIT

Ask people what the "wait interface" is, and most will probably mention V$SESSION_WAIT. Unlike the
V$SYSTEM_EVENT and V$SESSION_EVENT fixed views, V$SESSION_WAIT does not contain an aggregation of historical
events. Instead, it provides a view into what a specified session is doing right now:

SQL> desc v$session_wait
 Name Null? Type
 -------------------------------------- -------- --------------------------
 SID NUMBER
 SEQ# NUMBER
 EVENT VARCHAR2(64)
 P1TEXT VARCHAR2(64)
 P1 NUMBER
 P1RAW RAW(4)
 P2TEXT VARCHAR2(64)
 P2 NUMBER
 P2RAW RAW(4)
 P3TEXT VARCHAR2(64)
 P3 NUMBER
 P3RAW RAW(4)
 WAIT_TIME NUMBER
 SECONDS_IN_WAIT NUMBER
 STATE VARCHAR2(19)

Each row in V$SESSION_WAIT contains information about a session's present state. The statistics revealed by
V$SESSION_WAIT include:

SEQ#

Each time an event completes, the Oracle kernel increments this sequence number.

Page 5 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

WAIT_TIME

At the beginning of an instrumented wait event, the Oracle kernel sets the value of WAIT_TIME to zero. The
value remains zero until the wait event is complete, when the kernel sets its value to one of those shown in
Table 8-2. Note that the unit of measure is the centisecond, even in Oracle9i. There is no WAIT_TIME_MICRO
column at least through release 9.2.0.2.1, although the value of WAIT_TIME is derived from a microsecond
value in its underlying X$ view.

SECONDS_IN_WAIT

At the beginning of an instrumented wait event, the Oracle kernel sets the value of SECONDS_IN_WAIT to zero.
The session itself never updates the value again until the next instrumented wait event, whereupon the session
resets the value back to zero again. The value of SECONDS_IN_WAIT is incremented by 3 approximately every
three seconds by the log writer (LGWR) process. Note that the unit of measure is seconds, not centiseconds or
microseconds.

Events that "time out" complicate matters somewhat. For example, an enqueue wait event times out roughly
every two seconds, even for enqueue waits that last considerably longer. Upon each timeout, the Oracle kernel
increments SEQ#, but it does not reset the value of SECONDS_IN_WAIT.

STATE

At the beginning of an instrumented wait event, the value of STATE becomes WAITING. The value remains
WAITING until the wait event is complete, when the kernel sets its value to one of the values described in Table
8-2.

The following query will display information about the wait events that are presently executing on a given Oracle
system:

select sid, event, wait_time/100 t, seconds_in_wait w, state
from v$session_wait
order by 1

The following query will show a histogram of which activity your system's sessions are doing right now:

select event, count(*) from v$session_wait
where state='WAITING'
group by event
order by 2 desc

Table 8-2. Meanings of the values of the STATE and WAIT_TIME columns in V$SESSION_WAIT

STATE WAIT_TIME Implication

WAITED
UNKNOWN TIME -2 The value of TIMED_STATISTICS was FALSE for the session when the event

completed, so the actual duration is unknown.

WAITED SHORT
TIME -1 The wait event has completed, but it began and ended within the same

gettimeofday clock tick.

WAITING 0 The wait event is in process, pending completion.

WAITED KNOWN
TIME t 0

The wait event has completed, and it consumed t = t1 - t0 centiseconds of

elapsed execution time (Chapter 7).

Page 6 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Don't write V$SESSION_WAIT queries with WAIT_TIME=0 in your where clause if what you
really mean is STATE='WAITING'. Some analysts got into the habit of assuming that the
predicates WAIT_TIME=0 and STATE='WAITING' are equivalent, because in Oracle7 and
Oracle8i kernels, they were. However, in Oracle9i kernels, the two predicates are not
equivalent.

Oracle9i kernels compute WAIT_TIME as round(x$ksusecst.ksusstim/10000), but the STATE
value is a DECODE of the un-rounded value of KSUSSTIM. Therefore, WAIT_TIME can
appear to be zero when its base data value is actually not. Hence, Oracle9i kernels
produce situations in which WAIT_TIME is zero, but STATE is something other than
WAITING.

Oracle's Inauspicious Early Attempt to Document V$SESSION_WAIT

The kernel instrumentation described in this book and published back in 1992 has taken many years to
catch on. Oracle Corporation's earliest documentation about the new capability didn't exactly hasten the
feature's acceptance. For example, the Oracle7 Server Tuning guide shows the following
V$SESSION_WAIT query output [Oracle (1996)]:

SQL> SELECT sid, event, wait_time
 2 FROM v$session_wait
 3 ORDER BY wait_time, event;
 SID EVENT WAIT_TIME
---- ------------------------- ----------
...
 205 latch free 4294967295
 207 latch free 4294967295
 209 latch free 4294967295
 215 latch free 4294967295
 293 latch free 4294967295
 294 latch free 4294967295
 117 log file sync 4294967295
 129 log file sync 4294967295
 22 virtual circuit status 4294967295

The guide then provides the following advice: "The unusually large wait times for the last several events
signify that the sessions are currently waiting for that event [sic]. As you can see, there are currently
several sessions waiting for a latch to be free and for a log file sync."

If the implication in the document were true, then the events pictured in this example had been waiting
for 1.36193 years. Oops.

The problem began with omitting the STATE column from the query's select list. As it happens, the 32-bit
hexadecimal representation of the decimal integer -1 is ffffffff. Print this value as an unsigned 32-bit
integer, and you get 232 - 1, or 4294967295.

The WAIT_TIME values shown here are actually -1. This value corresponds to the STATE value WAITED
SHORT TIME (Table 8-2). Each of the "unusually large wait times" actually represents an event that had
already completed, and that had in fact completed so quickly that it was measured as having a zero-
centisecond duration.

Lots of authors made similar mistakes during the early years in their attempts to explain how to use the
new "wait" and "event" data. To their credit, they were the pioneers who stimulated many early adopters
of a new technology. But mistakes like the one described here, especially in the official Oracle
Corporation documentation, did retard the rate of acceptance of Oracle's amazing new diagnostic
features.

Page 7 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-8-SECT-2

Page 8 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 8. Oracle Fixed View Data

8.3 Useful Fixed View Queries

Almost every database administrator has a tool kit of V$ queries that she uses to help with database performance
analysis work. This section discusses some of my favorites and I'm sure some of yours as well. Be prepared though.
Chances are good that some of the reports you count on for information today are feeding you misleading data.
Practically every V$ query you can run is susceptible to one or more serious interpretation fallacies. This section
illustrates several.

8.3.1 Tom Kyte's Test Harness

One of my favorite fixed view-based tools ever is Tom Kyte's test harness that allows an application developer to
compare the performance of two competing application development approaches. You can see a complete description
online at http://asktom.oracle.com/~tkyte/runstats.html. This URL contains instructions about how to use the simple
harness, including an example of using the harness to demonstrate the horrifyingly bad scalability of applications that
do not use bind variables (http://asktom.oracle.com/pls/ask/f?p=4950:8:::::F4950_P8_DISPLAYID:2444907911913).

Tom's test harness is especially valuable for developers of Oracle applications to use early in their SQL development
cycles. Developers usually write code that users will later execute on a busy system. However, the systems on which
developers write that code are usually not busy—at least not in the same way that their users' systems are. Tom's test
harness measures an application's use of the Oracle resources that scale the worst (including, perhaps most notably,
Oracle latches). The results are simple to interpret. The fewer serialized resources that an approach requires, the better
you can expect it to scale when it becomes a part of your production workload. The best thing about Tom's harness is
that it's so easy to use that developers actually will use it. Once developers start thinking in the terms of the resource
consumption data that the harness provides, they write more scalable code.

8.3.2 Finding a Fixed View Definition

It can be difficult to find the information you need about a V$ fixed view from publications about Oracle. Sometimes
the information you want is simply not published. Other times you find the information that you think you're looking
for, but it's just plain wrong. Publications about Oracle are particularly unreliable in areas of the Oracle kernel that
evolve quickly. Fortunately, the kernel is somewhat self-documenting in the domain of fixed views. One secret lies
within knowing how to use V$FIXED_VIEW_DEFINITION. The hardest part is knowing its name:

SQL> desc v$fixed_view_definition
 Name Null? Type
 -------------------------------------- -------- --------------------------
 VIEW_NAME VARCHAR2(30)
 VIEW_DEFINITION VARCHAR2(4000)

V$FIXED_VIEW_DEFINITION is the means through which I learned, for example, the detailed definitions of the STATE
and WAIT_TIME columns of V$SESSION_WAIT. You can reproduce the result in just a few simple steps. Begin by
executing the following query to return the definition of the V$SESSION_WAIT view:

SQL> select * from v$fixed_view_definition
 2 where view_name='V$SESSION_WAIT';

VIEW_NAME

VIEW_DEFINITION

V$SESSION_WAIT
select sid,seq#,event,p1text,p1,p1raw,p2text,p2,p2raw,p3text, p3,p3raw,wait
_time,seconds_in_wait,state from gv$session_wait where inst_id = USERENV('I
nstance')

Page 1 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Notice, by the way, that the VIEW_NAME value for this view is stored using uppercase letters. So now you know that
V$SESSION_WAIT is simply a projection of GV$SESSION_WAIT. That doesn't tell you very much yet, however. The next
step is to figure out the definition of GV$SESSION_WAIT:

SQL> desc gv$session_wait
 Name Null? Type
 -------------------------------------- -------- --------------------------
 INST_ID NUMBER
 SID NUMBER
 SEQ# NUMBER
 EVENT VARCHAR2(64)
 P1TEXT VARCHAR2(64)
 P1 NUMBER
 P1RAW RAW(4)
 P2TEXT VARCHAR2(64)
 P2 NUMBER
 P2RAW RAW(4)
 P3TEXT VARCHAR2(64)
 P3 NUMBER
 P3RAW RAW(4)
 WAIT_TIME NUMBER
 SECONDS_IN_WAIT NUMBER
 STATE VARCHAR2(19)

SQL> select * from v$fixed_view_definition
 2 where view_name='GV$SESSION_WAIT';

VIEW_NAME

VIEW_DEFINITION

GV$SESSION_WAIT
select s.inst_id,s.indx,s.ksussseq,e.kslednam, e.ksledp1,s.ksussp1,s.ksussp
1r,e.ksledp2, s.ksussp2,s.ksussp2r,e.ksledp3,s.ksussp3,s.ksussp3r, round(s.
ksusstim / 10000) , s.ksusewtm, decode(s.ksusstim, 0, 'WAITING', -2, 'WAITED
 UNKNOWN TIME', -1, 'WAITED SHORT TIME', 'WAITED K NOWN TIME') from x$ksus
ecst s, x$ksled e where bitand(s.ksspaflg,1)!=0 and bitand(s.ksuseflg,1)!=0
 and s.ksussseq!=0 and s.ksussopc=e.indx

Voilà! Here you can see the rounding operation used to compute WAIT_TIME. From what you see here, you can also
determine the unit of measure in which this thing called X$KSUSECST.KSUSSTIM is expressed. We know that
WAIT_TIME is reported in centiseconds, and we know that the Oracle kernel divides this value by 104 to produce a
centisecond value. Therefore, there are 10k KSUSSTIM units in one second, where 10k/104 = 102. Hence, there are 106
KSUSSTIM units in a second. In other words, the Oracle kernel computes the wait time in microseconds, but the public
API (V$SESSION_WAIT) provides it in centiseconds.

8.3.3 Finding Inefficient SQL

Jeff Holt's htopsql.sql script, shown in Example 8-2, is what www.hotsos.com staff use when we wish to get a fast
overview of which SQL statements presently in the library cache have contributed the most to recent workload. The
query has no direct relationship to response time, but there is a strong correlation between a query's LIO count and the
total execution time for most SQL statements. The new columns CPU_TIME and ELAPSED_TIME, available in Oracle9i,
reveal in V$SQL some of the data previously available only in SQL trace data.

Example 8-2. This script reports on the apparent efficiency of SQL statements whose information presently
resides in the shared pool

rem $Header: /usr/local/hostos/RCS/htopsql.sql,v 1.6 2001/11/19 22:31:35
rem Author: jeff.holt@hotsos.com
rem Copyright (c) 1999 by Hotsos Enterprises, Ltd.
 All rights reserved.
rem Usage: This script shows inefficient SQL by computing the ratio
rem of logical_reads to rows_processed. The user will have
rem to press return to see the first page. The user should
rem be able to see the really bad stuff on the first page and
rem therefore should press ^C and then press [Return] when the
rem first page is completely displayed.

Page 2 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

rem SQL hash values are really statement identifiers. These
rem identifiers are used as input to a hashing function to
rem determine if a statement is in the shared pool.
rem This script shows only statement identifiers. Use hsqltxt.sql
rem to display the text of interesting statements.
rem Notes: This will return data for select,insert,update, and delete
rem statements. We don't return rows for PL/SQL blocks because
rem their reads are counted in their underlying SQL statements.
rem There is value in knowing the PL/SQL routine that executes
rem an inefficient statement but it's only important once you
rem know what's wrong with the statment.

col stmtid heading 'Stmt Id' format 9999999999
col dr heading 'PIO blks' format 999,999,999
col bg heading 'LIOs' format 999,999,999
col sr heading 'Sorts' format 999,999
col exe heading 'Runs' format 999,999,999
col rp heading 'Rows' format 9,999,999,999
col rpr heading 'LIOs|per Row' format 999,999,999
col rpe heading 'LIOs|per Run' format 999,999,999

set termout on
set pause on
set pagesize 30
set pause 'More: '
set linesize 95

select hash_value stmtid
 ,sum(disk_reads) dr
 ,sum(buffer_gets) bg
 ,sum(rows_processed) rp
 ,sum(buffer_gets)/greatest(sum(rows_processed),1) rpr
 ,sum(executions) exe
 ,sum(buffer_gets)/greatest(sum(executions),1) rpe
 from v$sql
where command_type in (2,3,6,7)
group by hash_value
order by 5 desc
/

set pause off

The query sorts its output by the number of LIO calls executed per row returned. This is a rough measure of statement
efficiency. For example, the following output should bring to mind the question, "Why should an application require
more than 174 million memory accesses to compute 5 rows?"

SQL> @htopsql
More:

 LIOs LIOs
 Stmt Id PIO blks LIOs Rows per Row Runs per Run
---------- ----------- ------------ ---- ------------ ---------- ----------
2503207570 39,736 871,467,231 5 174,293,446 138 6,314,980
1647785011 10,287,310 337,616,703 3 112,538,901 7,730,556 44
4085942203 45,748 257,887,860 8 32,235,983 138 1,868,753
3955802477 10,201 257,887,221 8 32,235,903 138 1,868,748
1647618855 53,136 5,625,843 0 5,625,843 128,868 44
3368205675 35,666 3,534,374 0 3,534,374 1 3,534,374
3722360728 54,348 722,866 1 722,866 1 722,866
 497954690 54,332 722,779 0 722,779 1 722,779
 90462217 361,189 4,050,206 8 506,276 137 29,564
 299369270 1,268 382,211 0 382,211 42,378 9
...

The output shown here was used in 1999 to identify a single SQL statement that was consuming almost 50% of the
total daily CPU capacity of an online system. However, as with any ratio, the LIOs per row definition of statement
efficiency can motivate false conclusions. For example, consider a SQL statement like this one:

select cust, sum(bal)
from colossal_order_history_table
where cust_id=:id
group by cust

Page 3 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

This query may legitimately visit a very large number of Oracle blocks (even using a primary key index on CUST_ID),
but it will at most return only one row. An htopsql.sql report would thus imply that this query is inefficient, when in
fact this might be a false negative implication.

Many analysts use a query like htopsql.sql as the beginning step in each of their performance improvement projects.
However, basing a performance improvement method upon any report upon V$SQL suffers from deficiencies induced
by time scope and program scope errors. Like most information you learn from V$ fixed views, it is difficult to
exercise control over the time scope and program scope of data obtained from V$SQL. For example, consider the
following situations:

� The SQL statement that most needs your attention is one that has not been run since last month's month-end
close. The statement is no longer in the library cache, so it will not be revealed in today's V$SQL report.

� The SQL statement that appears "most inefficient" is an element of an interface upload program that your
company will never run again.

� The SQL statement that appears "most inefficient" is one that runs from midnight to 3:00 a.m. Since its
window of permissible execution time extends until 6:00 a.m., and since all the nightly batch work finishes
long before that deadline, nobody cares that the inefficient SQL statement is slow.

� The SQL statement whose performance is most hurting the business's ability to improve net profit, cash flow,
and return on investment is not listed near the top of any of your V$SQL reports. Its ranking is mediocre
because none of its statistics is particularly remarkable, but from the business's perspective, this is clearly the
statement that is most hurting the system's economic value.

Without obtaining information from the business, there is no way to know whether the performance of a SQL
statement that rises to the top of the report is actually even critical to the business. I believe that V$SQL is any
performance analyst's most valuable V$ fixed view in the database. However, the power of using V$SQL is far less than
the power of a performance improvement project that follows Method R.

8.3.4 Finding Where a Session Is Stuck

From time to time, we all get that call. It's Nancy on the phone, and her session is "stuck." She's asked her colleagues
already if the system is down, and everyone else around her seems to be working fine. Perhaps the reason Nancy's
calling is because in last week's brown-bag lunch event,[1] you explained to your users why they should not reboot
their personal computer when this kind of thing happens. If you know how to find Nancy's session ID (Chapter 6),
then it is easy to determine what's going on with her session. Imagine that we had found out that Nancy's session ID is
42. Then you use the following query to determine why she's stuck:

[1] A brown-bag lunch is an event at which employees eat lunch they've brought while they discuss a work-related topic.

SQL> col sid format 999990
SQL> col seq# format 999,990
SQL> col event format a26
SQL> select sid, seq#, event, state, seconds_in_wait sec onds
 2 from v$session_wait
 3 where sid=42

 SID SEQ# EVENT STATE SECONDS
------- -------- -------------------------- ------------------- ----------
 42 29,786 db file sequential read WAITED SHORT TIME 174

Does this mean that Nancy's session is stuck waiting for I/O? No; actually this query indicates the contrary. The most
recent wait event that Nancy's Oracle kernel process executed was in fact a file read operation, but the operation
completed approximately 174 seconds ago (plus or minus roughly 3 seconds). Furthermore, the operation completed
in less than one unit of Oracle timer resolution. (On an Oracle8i system, this means that the elapsed time of the read
operation was less than 0.01 seconds.) So what is Nancy's session waiting on?

Page 4 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The answer is that her session (really, her Oracle kernel process) is either working its brains out consuming CPU
capacity, or her session is waiting its turn in the ready to run queue for its next opportunity to work its brains out
consuming CPU capacity. You can watch what the session is doing by issuing successive queries of V$SESS_IO:

SQL> col block_gets format 999,999,999,990
SQL> col consistent_gets format 999,999,999,990
SQL> select to_char(sysdate, 'hh:mi:ss') "TIME",
 2 block_gets, consistent_gets
 3 from v$sess_io where sid=42;

TIME BLOCK_GETS CONSISTENT_GETS
-------- ---------------- ----------------
05:20:27 2,224 22,647,561

SQL> /

TIME BLOCK_GETS CONSISTENT_GETS
-------- ---------------- ----------------
05:20:44 2,296 23,382,994

By incorporating a timestamp into your query, you can get a feel for the rate at which your Oracle system can process
LIO calls. The system shown here processed 735,505 LIO calls in about 17 seconds, which yields a rate of 43,265
LIOs per second. With this information, you can begin to appreciate what Nancy is going through. The more than
22,000,000 LIOs executed by her program when you first began looking at it had already consumed almost nine
minutes of execution time. It's time now for you to find out what SQL Nancy's program is running so that you can get
it fixed. You can do that job by joining V$OPEN_CURSOR and V$SQL. I'd rather have extended SQL trace data for
Nancy's program if I could get it, but if you don't have that luxury, smart use of Oracle's fixed views can help you find
the problem.

8.3.5 Finding Where a System Is Stuck

Sometimes the phone rings, and before Nancy finishes describing her problem, you notice another incoming call on
line two. Then within two minutes, you've heard complaints from four users, and you have seven new voicemails
containing ones you haven't heard yet. What should you do? If your system permits the execution of a query, here's
the one I'd suggest that you run:

SQL> break on report
SQL> compute sum of sessions on report
SQL> select event, count(*) sessions from v$session_wait
 2 where state='WAITING'
 3 group by event
 4 order by 2 desc;

EVENT SESSIONS
-- ----------
SQL*Net message from client 211
log file switch (archiving needed) 187
db file sequential read 27
db file scattered read 9
rdbms ipc message 4
smon timer 1
pmon timer 1

sum 440

The report shown here depicts 440 connected sessions. At the time of the query, over 200 of the Oracle kernel
processes are blocked on a read of the SQL*Net socket while their end-user applications execute code path between
database calls. Many of these 211 processes are probably sitting idle while their users use non-Oracle applications,
talk with colleagues, or attend to one or more of our species' many physiological needs. More disturbing is that 187
sessions are blocked waiting for log file switch (archiving needed). This message indicates that the Oracle ARCH process
is not able to keep pace with the generation of online redo.

A few other users on the system are actually getting work done (36 are engaged in reading database files), but as each
user attempts to execute a database COMMIT call, she'll get caught waiting for a log file switch (archiving needed) event.
The longer the problem goes uncorrected, the more users will get stuck waiting for the event. On the system where

Page 5 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

this output was obtained, the database administrator had neglected to anticipate that on this particular day, the ARCH
process's destination file system would fill.

8.3.6 Approximating a Session's Resource Profile

The program vprof, shown in Example 8-3, is something that I cobbled together to collect Oracle timing data for a
specified Oracle session for a specified time interval. I designed vprof not for production use (I don't consider it
worthy for production use), but to illustrate some of the complexities of trying to use SQL upon fixed views to
perform well-scoped diagnostic data collection. I find vprof to be useful in educational environments to help explain
points including:

� The union of data from V$SESSTAT and V$SESSION_EVENT approximately accounts for the total response time
of a user action.

� Attempts to obtain user action timing data from Oracle V$ fixed views are plagued by difficult time scope
challenges.

� Diagnosing the performance problem of a targeted user action is a much bigger job than just creating the
action's resource profile.

Example 8-3. A Perl program that uses SQL to approximate a session's resource profile for a specified time
interval

#!/usr/bin/perl

$Header: /home/cvs/cvm-book1/sqltrace/vproP.pl,v 1.8 2003/04/08 14:27:30
Cary Millsap (cary.millsap@hotsos.com)
Copyright (c) 2003 by Hotsos Enterprises, Ltd. All rights reserved.

use strict;
use warnings;
use Getopt::Long;
use DBI;
use Time::HiRes qw(gettimeofday);
use Date::Format qw(time2str);

sub nvl($;$) {
 my $value = shift;
 my $default = shift || 0;
 return $value ? $value : $default;
}

fetch command-line options
my %opt = (
 service => "",
 username => "/",
 password => "",
 debug => 0,
);
GetOptions(
 "service=s" => \$opt{service},
 "username=s" => \$opt{username},
 "password=s" => \$opt{password},
 "debug" => \$opt{debug},
);

fetch sid from command line
my $usage = "Usage: $0 [options] sid\n\t";
my $sid = shift or die $usage;

connect to Oracle and prepare snapshot SQL
my %attr = (RaiseError => 1, AutoCommit => 0);
my $dbh = DBI->connect(
 "dbi:Oracle:$opt{service}", $opt{username}, $opt{password}, \%attr
);
my $sth = $dbh->prepare(<<'END OF SQL', {ora_check_sql => 0});
select

Page 6 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

 'CPU service' ACTIVITY,
 value TIME,
 (
 select
 value
 from
 v$sesstat s,
 v$statname n
 where
 sid = ?
 and n.statistic# = s.statistic#
 and n.name = 'user calls'
) CALLS
from
 v$sesstat s,
 v$statname n
where
 sid = ?
 and n.statistic# = s.statistic#
 and n.name = 'CPU used by this session'
union
select
 e.event ACTIVITY,
 e.time_waited TIME,
 e.total_waits CALLS
from
 v$session_event e
where
 sid = ?
END OF SQL

wait for signal and collect t0 consumption snapshot
print "Press <Enter> to mark time t0: "; <>;
my ($sec0, $msec0) = gettimeofday;
$sth->execute($sid, $sid, $sid);
my $h0 = $sth->fetchall_hashref("ACTIVITY");

wait for signal and collect t1 consumption snapshot
print "Press <Enter> to mark time t1: "; <>;
my ($sec1, $msec1) = gettimeofday;
$sth->execute($sid, $sid, $sid);
my $h1 = $sth->fetchall_hashref("ACTIVITY");

construct profile table
my %prof;
for my $k (keys %$h1) {
 my $calls = $h1->{$k}->{CALLS} - nvl($h0->{$k}->{CALLS}) or next;
 $prof{$k}->{CALLS} = $calls;
 $prof{$k}->{TIME} = ($h1->{$k}->{TIME} - nvl($h0->{$k}->{TIME})) / 100;
}

compute unaccounted-for duration
my $interval = ($sec1 - $sec0) + ($msec1 - $msec0)/1E6;
my $accounted = 0; $accounted += $prof{$_}->{TIME} for keys %prof;
$prof{"unaccounted-for"} = {
 ACTIVITY => "unaccounted-for",
 TIME => $interval - $accounted,
 CALLS => 1,
};

print debugging output if requested
if ($opt{debug}) {
 use Data::Dumper;
 printf "t0 snapshot:\n%s\n", Dumper($h0);
 printf "t1 snapshot:\n%s\n", Dumper($h1);
 print "\n\n";
}

print the resource profile
print "\nResource Profile for Session $sid\n\n";
printf "%24s = %s.%06d\n", "t0", time2str("%T", $sec0), $msec0;
printf "%24s = %s.%06d\n", "t1", time2str("%T", $sec1), $msec1;
printf "%24s = %15.6fs\n", "interval duration", $interval;
printf "%24s = %15.6fs\n", "accounted-for duration", $accounted;
print "\n";
my ($c1, $c2, $c4, $c5) = (32, 10, 10, 11);

Page 7 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

my ($c23) = ($c2+1+7+1);
printf "%-${c1}s %${c23}s %${c4}s %${c5}s\n",
 "Response Time Component", "Duration (seconds)", "Calls", "Dur/Call";
printf "%-${c1}s %${c23}s %${c4}s %${c5}s\n",
 "-"x$c1, "-"x$c23, "-"x$c4, "-"x$c5;
for my $k (sort { $prof{$b}->{TIME} <=> $prof{$a}->{TIME} } keys %prof) {
 printf "%-${c1}s ", $k;
 printf "%${c2}.2f ", $prof{$k}->{TIME};
 printf "%7.1f%% ", $prof{$k}->{TIME}/$interval*100;
 printf "%${c4}d ", $prof{$k}->{CALLS};
 printf "%${c5}.6f\n",
 ($prof{$k}->{CALLS} ? $prof{$k}->{TIME}/$prof{$k}->{CALLS} : 0);
}
printf "%-${c1}s %${c23}s %${c4}s %${c5}s\n",
 "-"x$c1, "-"x$c23, "-"x$c4, "-"x$c5;
printf "%-${c1}s %${c2}.2f %7.1f%%\n",
 "Total", $interval, $interval/$interval*100;

wrap up
$dbh->disconnect;

_ _END_ _

=head1 NAME

vprof - create an approximate resource profile for a session

=head1 SYNOPSIS

vprof
 [--service=I<h>]
 [--username=I<u>]
 [--password=I<p>]
 [--debug=I<d>]
 I<session-id>

=head1 DESCRIPTION

B<vprof> uses queries from B<V$SESSTAT> and B<V$SESSION_EVENT> to
construct an approximate resource profile for the Oracle session whose
B<V$SESSION.SID> value is given by I<session-id>. The time scope of the
observation interval is defined interactively by the user's response to
the prompts to mark the times I<t0> and I<t1>, where I<t0> is the
observation interval start time, and I<t1> is the observation interval end
time.

=head2 Options

=over 4

=item B<--service=>I<h>

The name of the Oracle service to which B<vprof> will connect. The default
value is "" (the empty string), which will cause B<vprof> to connect
using, for example, the default Oracle TNS alias.

=item B<--username=>I<u>

The name of the Oracle schema to which B<vprof> will connect. The default
value is "/".

=item B<--password=>I<p>

The Oracle password that B<vprof> will use to connect. The default value
is "" (the empty string).

=item B<--debug=>I<d>

When set to 1, B<vprof> dumps its internal data structures in addition to
its normal output. The default value is 0.

=back

Page 8 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

=head1 EXAMPLES

Use of B<vprof> will resemble something like the following case in which I
used B<vprof> to report on statistics generated by B<vprof>'s own Oracle
connection:

 $ vprof --username=system --password=manager 8
 Press <Enter> to mark time t0:
 Press <Enter> to mark time t1:

 Resource Profile for Session 8

 t0 = 14:59:12.596000
 t1 = 14:59:14.349000
 interval duration = 1.753000s
 accounted-for duration = 1.670000s

 Response Time Component Duration (seconds) Calls Dur/Call
 ----------------------------- -------------------- --------- ----------
 SQL*Net message from client 1.38 78.7% 1 1.380000
 CPU service 0.29 16.5% 1 0.290000
 unaccounted-for 0.08 4.7% 1 0.083000
 SQL*Net message to client 0.00 0.0% 1 0.000000
 ----------------------------- -------------------- --------- ----------
 Total 1.75 100.0%

=head1 AUTHOR

Cary Millsap (cary.millsap@hotsos.com)

=head1 BUGS

B<vprof> suffers from several severe limitations, including:

=over 2

=item -

If a wait event is pending at time I<t0>, then the profile will contain
excess time, which will manifest as negative "unaccounted-for" time. This
situation happens frequently for the event 'SQL*Net message from client'.
This is the wait event whose execution is pending while an application user
is idle.

=item -

If a wait event is pending at time I<t1>, then the profile will be absent
some missing time, which will manifest as positive "unaccounted-for" time.
This situation is likely to happen if you choose time I<t1> to occur
during a long-running program.

=item -

The limitations listed above can combine to offset each other, on occasion
resulting in small "unaccounted-for" duration. This produces a false
positive indication that everything is alright when actually there are two
problems.

=item -

If the specified sid does not exist at time I<t0>, then the program will
return a profile filled with unaccounted-for time.

=item -

If a session with the specified sid terminates between time I<t0> and
I<t1>, then the resulting resource profile will contain only
unaccounted-for time. ...Unless a new session with the specified B<sid>
(but of course a different B<serial#>) is created before I<t1>. In this
case, the output will look appropriate but be completely erroneous.

=back

Page 9 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

=head1 COPYRIGHT

Copyright (c) 2000-2003 by Hotsos Enterprises, Ltd. All rights reserved.

The output of vprof looks like this for a session on my system with V$SESSION.SID=8:

$ perl vprof.pl --username=system --password=manager 8
Press <Enter> to mark time t0: [RETURN]
Press <Enter> to mark time t1: [RETURN]

Resource Profile for Session 8

 t0 = 09:08:00.823000
 t1 = 09:08:01.103000
 interval duration = 0.280000s
 accounted-for duration = 0.280000s

Response Time Component Duration (seconds) Calls Dur/Call
-------------------------------- -------------------- ----------- ---------
CPU service 0.27 96.4% 1 0.270000
SQL*Net message from client 0.01 3.6% 1 0.010000
unaccounted-for 0.00 0.0% 1 0.000000
SQL*Net message to client 0.00 0.0% 1 0.000000
-------------------------------- -------------------- ----------- ---------
Total 0.28 100.0%

The chief benefit of vprof is how it puts CPU service, unaccounted-for time, and the actual Oracle wait events on an
equal footing to create a real resource profile. The output of vprof gets really interesting when you experiment with
the timing of the two interactive inputs. For example, if you mark the time t0 several seconds before the session under

diagnosis does anything, then vprof will produce a large negative unaccounted-for duration, as follows:

$ perl vprof.pl --username=system --password=manager 58
Press <Enter> to mark time t0: [RETURN]
Press <Enter> to mark time t1: [RETURN]

Resource Profile for Session 58

 t0 = 23:48:18.072254
 t1 = 23:49:09.992339
 interval duration = 51.920085s
 accounted-for duration = 86.990000s

Response Time Component Duration (seconds) Calls Dur/Call
-------------------------------- ------------------- ---------- -----------
SQL*Net message from client 54.04 104.1% 2 27.020000
CPU service 31.98 61.6% 3 10.660000
db file sequential read 0.93 1.8% 29181 0.000032
async disk IO 0.03 0.1% 6954 0.000004
direct path read 0.01 0.0% 1228 0.000008
SQL*Net message to client 0.00 0.0% 2 0.000000
db file scattered read 0.00 0.0% 4 0.000000
direct path write 0.00 0.0% 2 0.000000
unaccounted-for -35.07 -67.5% 1 -35.069915
-------------------------------- ------------------- ---------- -----------
Total 51.92 100.0%

At the time t0, a long SQL*Net message from client event was in-process, so none of its total duration had yet been tallied

to V$SESSION_EVENT. By the arrival of time t1, the entire long SQL*Net message from client event had tallied to

V$SESSION_EVENT, but part of that event duration occurred prior to the beginning of the observation interval. The
vprof program computed the interval duration correctly as t1 - t0, but the total Oracle event time accounted for

between times t1 and t0 exceeded the quantity t1 - t0, so vprof introduced a negative unaccounted-for pseudo-event to

true up the profile.

This is a nice example of collection error that can taint your diagnostic data (see Chapter 6 for more on the topic of
collection error). If you were to improve the production-worthiness of vprof, you could check V$SESSION_WAIT for an
in-process event execution at t0 and then correct for it based on what you found. This is the kind of thing we did in the

Page 10 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

year 2000 for our big V$ data analysis project. It was after figuring out how to correct several problems like this that
we discovered all the other limitations described earlier in this chapter and decided to cut our losses on the project.
For example, what if enqueue waits had shown up at the top of your resource profile? How would you go about
determining which lock it was that your program under diagnosis had waited on (past tense) when it was running?
Performing further diagnosis of such a problem without properly time- and action-scoped data is a non-deterministic
process that can easily result in one of the project catastrophes described in Chapter 1.

8.3.7 Viewing Waits System-Wide

One of the most popular reports on system performance executed since the mid-1990s is probably the system-wide
events report. Just about the simplest decent version of the report looks something like this:

SQL> col event format a46
SQL> col seconds format 999,999,990.00
SQL> col calls format 999,999,990
SQL> select event, time_waited/100 seconds, total_waits calls
 2 from v$system_event
 3 order by 2 desc;

EVENT SECONDS CALLS
-- --------------- ------------
rdbms ipc message 13,841,814.91 3,671,093
pmon timer 3,652,242.44 1,305,093
smon timer 3,526,140.14 12,182
SQL*Net message from client 20,754.41 12,627
control file parallel write 2,153.49 1,218,538
db file sequential read 91.61 547,488
log file parallel write 55.66 23,726
db file scattered read 26.26 235,882
control file sequential read 8.12 365,643
control file heartbeat 3.99 1
latch activity 2.93 30
buffer busy waits 1.41 72
resmgr:waiting in end wait 0.93 44
latch free 0.80 39
resmgr:waiting in check 0.53 36
log file sync 0.28 19
process startup 0.22 6
rdbms ipc reply 0.14 9
db file parallel read 0.11 4
async disk IO 0.10 19,116
db file parallel write 0.09 24,420
SQL*Net more data to client 0.09 2,014
resmgr:waiting in check2 0.06 2
SQL*Net message to client 0.06 12,635
direct path read 0.05 5,014
log file sequential read 0.03 4
refresh controlfile command 0.00 1
log file single write 0.00 4
SQL*Net break/reset to client 0.00 23
direct path write 0.00 10

30 rows selected.

This type of report is supposed to help the performance analyst instantly determine the nature of a "system's"
performance problem. However, the report has many problems living up to that job description. Reports like this can
help you solve some types of performance problems, but they fail to help you solve many of the problems I've
illustrated throughout this book, such as:

� Problems with user actions whose performance characteristics do not resemble the system-wide average
performance characteristics. You cannot extrapolate detail from an aggregate. Not realizing this can lead to
accidental performance degradation for important user actions for the reasons described in Chapter 4.

� Problems with user actions whose performance problems can be diagnosed quickly by observing SQL*Net

message from client durations that should be counted as user action response time. Does the SQL*Net message
from client duration shown in a V$SYSTEM_EVENT report indicate a network I/O inefficiency, or that an

Page 11 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

application is issuing an excessive number of database calls? You simply can't tell from V$SYSTEM_EVENT
data. Big numbers might indicate problems like these. And big numbers might indicate simply that users spend
a lot of time connected but not doing anything productive.

Relying on V$SYSTEM_EVENT reports thus returns me to the topic I addressed in Chapter 3 about whether it makes
sense to use different methods for different problems. Using different methods to diagnose different problem types
presupposes that you can guess what the problem is before you begin your diagnosis. This is the method deficiency
that causes many of the project catastrophes that I describe in Chapter 1.

The following sections illustrate some of the reasons why V$SYSTEM_EVENT reports fail to help you solve certain
performance problem types.

8.3.7.1 The "idle events" problem

From looking at the system-wide events report shown previously, a naïve analyst would surely identify rdbms ipc
message as far and away the top problem on the system. However, this diagnosis would probably be incorrect. As
most analysts experienced with the "Oracle wait interface" know, rdbms ipc message is one of the so-called idle wait
events. The event is in fact where Oracle DBWn, LGWR, CKPT, and RECO processes log all the time they spend not
doing anything. For similar reasons, pmon timer, smon timer, and SQL*Net message from client are regarded as idle events
as well.

The standard advice is that you should ignore Oracle idle events. However, there's a big problem with this advice:
considering some events to be "idle" eliminates your ability to diagnose certain whole problem classes. Some of the
case studies shown in Chapter 12 illustrate this point. In targeted user actions that my colleagues and I have diagnosed
since the year 2000, in a significant proportion of cases SQL*Net message from client is the dominant contributor to end-
user response time.

Why, then, is SQL*Net message from client considered an "idle event"? It is because in a profile with whole-instance
action scope and since-startup time scope, most sessions in fact sit idle awaiting user input. The whole time you spend
connected but not making Oracle database calls while you're on a coffee break is tallied to the event SQL*Net message
from client. So in a system-wide wait event report, you really must ignore all the idle events. More "sophisticated"
applications that produce system-wide wait data reports use a table of idle events to filter "idle event" rows
completely out of the report.

8.3.7.2 The denominator problem

If you study a simple V$SYSTEM_EVENT report for a while, you might start wondering how the statistics relate to total
instance uptime. Just about the fanciest program I've ever seen to help answer this question is shown in Example 8-4.
This SQL*Plus program is an attempt to produces a true resource profile that depicts each event's total duration as a
percentage of total instance uptime.

Example 8-4. A SQL program that displays a system's wait events

/* $Header: /home/cvs/cvm-book1/sql/sysprof.sql,v 1.2 2003/04/24 05:19:20
Cary Millsap (cary.millsap@hotsos.com)
Copyright (c) 2002 by Hotsos Enterprises, Ltd. All rights reserved.

This program creates an approximate resource profile for a system. Note,
however, that the very concept of attributing time_waited as a proportion
of instance uptime makes no sense, because it doesn't take into account
the varying number of sessions that are active at different times in the
history of the instance.
*/

set echo off feedback on termout on linesize 75 pagesize 66
clear col break compute
undef instance_uptime cpu_consumption event_duration delta

/* compute total instance uptime */
col td format 999,999,999,990 new_value instance_uptime
select (sysdate-startup_time)*(60*60*24) td from v$instance;

Page 12 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

/* compute total Oracle kernel CPU consumption */
col cd format 999,999,999,990 new_value cpu_consumption
select value/100 cd from v$sysstat
where name = 'CPU used by this session';

/* compute total event duration */
col ed format 999,999,999,990 new_value event_duration
select sum(time_waited)/100 ed from v$system_event;

/* compute unaccounted-for duration */
col dd format 999,999,999,990 new_value delta
select &instance_uptime - (&cpu_consumption + &event_duration) dd
from dual;

/* compute the resource profile */
col e format a30 head 'Event'
col t format 99,999,990.00 head 'Duration'
col p format 990.9 head '%'
col w format 999,999,999,999,990 head 'Calls'
break on report
compute sum label TOTAL of w t p on report
select
 'CPU service' e,
 &cpu_consumption t,
 (&cpu_consumption)/(&instance_uptime)*100 p,
 (select value from v$sysstat where name = 'user calls') w
from dual
union
select
 'unaccounted for' e,
 &delta t,
 (&delta)/(&instance_uptime)*100 p,
 NULL w
from dual
union
select
 e.event e,
 e.time_waited/100 t,
 (e.time_waited/100)/(&instance_uptime)*100 p,
 e.total_waits w
from v$system_event e
order by t desc
/

Does printing event wait time as a percentage of total instance uptime sound like a nice theory to you? Here's a report
that does it:

Event Duration % Calls
------------------------------ -------------- ------ --------------------
rdbms ipc message 13,848,861.00 369.6 3,672,850
pmon timer 3,653,991.35 97.5 1,305,718
smon timer 3,527,940.29 94.2 12,188
CPU service 89,365.37 2.4 12,807
SQL*Net message from client 23,209.05 0.6 12,655
control file parallel write 2,154.32 0.1 1,219,121
db file sequential read 91.66 0.0 547,493
log file parallel write 55.68 0.0 23,739
db file scattered read 26.66 0.0 236,079
control file sequential read 8.12 0.0 365,817
control file heartbeat 3.99 0.0 1
latch activity 2.93 0.0 30
buffer busy waits 1.41 0.0 72
resmgr:waiting in end wait 0.93 0.0 44
latch free 0.80 0.0 39
resmgr:waiting in check 0.53 0.0 36
log file sync 0.28 0.0 19
process startup 0.22 0.0 6
rdbms ipc reply 0.14 0.0 9
db file parallel read 0.11 0.0 4
async disk IO 0.10 0.0 19,116
SQL*Net more data to client 0.09 0.0 2,018
db file parallel write 0.09 0.0 24,436
SQL*Net message to client 0.06 0.0 12,663
resmgr:waiting in check2 0.06 0.0 2

Page 13 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

direct path read 0.05 0.0 5,014
log file sequential read 0.03 0.0 4
SQL*Net break/reset to client 0.00 0.0 25
direct path write 0.00 0.0 10
log file single write 0.00 0.0 4
refresh controlfile command 0.00 0.0 1
unaccounted for -17,398,633.00 -464.3
 -------------- ------ --------------------
TOTAL 3,747,082.32 100.0 7,472,020

Notice the percentage for the rdbms ipc message event. Weird, right? How can a single event's total duration be 369.6%
of total instance uptime? This one's actually easy. It's because on the system behind this report, there are four
processes logging time to rdbms ipc message, and each is logging nearly 100% of its time to the event (my test system
behind this report is a mostly idle instance). Next, what's up with the -17,398,633.00 seconds of unaccounted-for
time? It's a simple artifact of my program's attempt to "true up" the accounting of all the time that is attributed to an
observation interval that is known to be 3,747,082.32 seconds long (our instance has been running for about 43 days).

Perhaps a great idea would be to create a report that shows consumption for each type of resource as a percentage of
total capacity for that resource? It's a nice idea, but even this introduces several surprises. You've already seen that the
"capacity" for a system's rdbms ipc message consumption is the uptime for the instance times the number of processes
that might log time to the event. Consider some other events:

CPU service

A system's CPU service capacity is the number of CPUs times the uptime for the instance.

SQL*Net message from client

A system's capacity for logging "between db call" time is the sum of all the Oracle session durations that have
occurred since instance startup. One might calculate this figure using operational data available from connect-
level auditing.

db file scattered read

A system's disk read capacity is the number of disk drives times the uptime for the instance, right? Not so fast.
The Oracle kernel includes more than just disk service time in an Oracle wait event duration. Remember from
Chapter 7 that, in addition to resource service time, there's also (most significantly) queueing for the resource
and time spent in the operating system's ready to run state. A system's db file scattered read capacity is thus also
the sum of all the Oracle session durations that have occurred since instance startup.

As far as I can tell, there's no denominator by which you can divide to make a V$SYSTEM_EVENT report into a
legitimate resource profile.

8.3.7.3 Infinite capacity for waiting

A big part of the problem is a principal that I can best illustrate with a brief thought experiment. Imagine that a
hundred users stand in line to connect to an Oracle instance on a desktop personal computer with one very slow CPU
and one very slow disk drive. When a user reaches the head of the queue, she opens a new SQL*Plus session,
connects to Oracle, minimizes the session, and then leaves the room. After all 100 users had performed this task,
imagine that you could see exactly how the resulting 100 Oracle sessions had consumed their time for a one-minute
interval.

You would find that there had been 100 minutes of time spent by the Oracle kernel waiting on 100 different blocking
read calls of a SQL*Net socket. An instance-wide resource profile for that minute would reveal that the system had
consumed 100 minutes of elapsed time "executing an event." How can this be? The system has only one CPU and one
disk. How could it have enough capacity for 100 users to have consumed 100 minutes of elapsed time? The answer is

Page 14 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

simple:

Any system has an infinite capacity for waiting.

Of course, this example proves only a weak little point, because the event I've asked you to consider is widely
acknowledged as an "idle event." Even a single-CPU system could wait for a million idle events at the same time and
never use the CPU or disk at all.

The stunning thing is that the example works equally well if we modify it to integrate quite an obviously non-idle
event into the starring role. Imagine that through some trick of coordination, all 100 users were able to simultaneously
request different database blocks from the single very slow disk drive on this desktop PC. Let's say for the sake of
simplicity that this very slow disk was able to fulfill the read requests at a rate of one block per second.

At first, all 100 sessions would be waiting for a single-block db file sequential read event. After one second, the first
session to have its read request fulfilled would switch to waiting for SQL*Net message from client, and the other 99
would continue to wait for db file sequential read. After two seconds, there would be two sessions waiting on socket
reads, and 98 sessions waiting on file reads. Finally, after 100 seconds, all 100 sessions would again be waiting on
SQL*Net socket reads.

After 100 seconds, there would be 1 + 2 + 3 + ... + 100 seconds' worth of waiting on file reads, for a grand total of
5,050 seconds of waiting. And there would be 99 + 98 + 97 + ... + 0 seconds' worth of waiting on socket reads, for a
grand total of 4,950 seconds of waiting. A system-wide resource profile for the 100-seconds interval during
fulfillment of the 100 file reads would look like this:

Event Duration % Calls
------------------------------ -------------- -------- --------------------
db file sequential read 5,050.00 5,050.0 100
SQL*Net message from client 4,950.00 4,950.0 99
unaccounted for -9,900.00 -9,900.0
 -------------- -------- --------------------
TOTAL 100.00 100.0 200

Now, it appears that our single-CPU system with one very slow disk has provided 5,050 seconds' worth of disk
service to its users in a 100 second interval. How can this be possible? It is because there were only 100 seconds'
worth of disk service provided to end users' sessions. The remainder of the "wait time" (which is actually a response
time in queueing theory terms, as you'll see in Chapter 11) is actually queueing delay—time spent waiting for the busy
disk device. Again, you see, any system has an infinite capacity for waiting.

8.3.7.4 Idle events in background sessions

User sessions (sessions for which V$SESSION.TYPE = 'USER') tend to tally time to SQL*Net message from client when
their human end-users are idle. On Oracle systems with a lot of user logons executed over the life of an instance, this
time commonly sorts to the top of any query on V$SYSTEM_EVENT that sorts by descending TIME_WAITED order.

However, the Oracle background processes (sessions for which V$SESSION.TYPE = 'BACKGROUND') stay connected for
an instance's entire lifespan, and background processes do very little when they're not required to. Consequently,
background processes contribute heavily to the body of "idle events." The following query shows why:

SQL> col program format a23
SQL> col event format a18
SQL> col seconds format 99,999,990
SQL> col state format a17
SQL> select s.program, w.event, w.seconds_in_wait second s, w.state
 2 from v$session s, v$session_wait w
 3 where s.sid = w.sid and s.type = 'BACKGROUND'
 4 order by s.sid;

PROGRAM EVENT SECONDS STATE
----------------------- ------------------ ----------- -----------------
oracle@research (PMON) pmon timer 1,529,843 WAITING
oracle@research (DBW0) rdbms ipc message 249 WAITING
oracle@research (LGWR) rdbms ipc message 246 WAITING

Page 15 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-8-SECT-3

oracle@research (CKPT) rdbms ipc message 0 WAITING
oracle@research (SMON) smon timer 1,790 WAITING
oracle@research (RECO) rdbms ipc message 208,071 WAITING

6 rows selected.

You can see in this report that the PMON session has been "waiting" on an event called pmon timer for roughly 17.7
days (we don't do much work on our research instance). The DBW0, LGWR, CKPT, and RECO sessions are waiting on
an event called rdbms ipc message. And SMON has its own timer event called smon timer. It is completely fair to call
these events "idle," because the sessions that log time to them are literally sitting idle, awaiting demand to arrive upon
some communication device.

However, ignoring idle events is a poor workaround to the fundamental problem of botching either the time scope or
the action scope of the data collection process. Unless you are concerned that the performance of a background
session requires improvement, you should never encounter pmon timer, rdbms ipc message, or smon timer events in an
analysis. If you actually are working on improving the performance of a background session, and your well-scoped
diagnostic data contain large contributions of one of these events, then the right question for you to answer is:

Why is this session sitting idle when I expect it to be doing its work more quickly than it is right now?

If a so-called idle event is consuming end-user response time, then it is something to worry about.

8.3.7.5 Targeting revisited

Why have I waited until this late in the book to tell you about the horrible complications caused by these "idle
events"? Actually, I haven't. I described Oracle idle events in Chapter 5. However, I called them "events that occur
between database calls," and I never once described them in a manner that makes them seem like a problem. The
between-call events aren't a problem at all if you are using properly scoped diagnostic data. Without proper scoping,
you lose data. With proper scoping, a between-call event has every bit as much diagnostic value as any other event.

Proper scoping during the data collection phase of a performance improvement project makes all
Oracle wait events relevant. With properly scoped data, there is no such thing as an "idle event" that
can be ignored.

Targeting is the key to economically efficient performance improvement.

Page 16 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 8. Oracle Fixed View Data

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-8-SECT-4

8.4 The Oracle "Wait Interface"

In conferences held around the turn of this century, it was apparent that the popular fashion in Oracle "tuning" had
taken a dramatic turn. In the year 2001, Oracle conference papers about the new "wait interface" equaled or
outnumbered papers about the traditional utilization-based approaches. What is the "wait interface?"

Many performance analysts define the wait interface narrowly as the set of four new fixed views introduced to the
public in Oracle 7.0.12:

V$SYSTEM_EVENT
V$SESSION_EVENT
V$SESSION_WAIT
V$EVENT_NAME

These fixed views indeed provide significantly important performance information, but they do not replace other
information in the database, nor do they constitute a complete new interface to performance measurement. These
fixed views merely provide more information to the performance analyst, helping us improve our response time
model from the unreliable e = c + ∆ model that we had to use in the 1980s, to the complete response time accounting
model that we can use today:

The new fixed views do not contain any information about CPU capacity consumption or an Oracle kernel program's
motives for such consumption (LIO calls, sorts, hashes, and so on). But of course that's okay, because this information
already exists in V$SESSTAT and V$SYSSTAT. The new fixed views are designed to be used in union with the existing
ones.

Defining the wait interface narrowly as the collection of four new V$ tables leads to unfairly restrictive propositions
like this one:

You can't find some kinds of performance problems with the Oracle wait interface: CPU consumers
like LIO hogs, sessions that wait for CPU, and sessions that wait for paging or swapping.

Of course you can no more find LIO hogs in V$SESSION_EVENT than you can find the names of your online redo log
files in V$PROCESS. But, as you have seen, you can find CPU consumers like LIO hogs by using Oracle's fixed views
or extended SQL trace data. You can even find sessions that wait for CPU, and sessions that wait for paging and
swapping by understanding Oracle's extended SQL trace data.

When you use the term "wait interface," just make sure that you and the person you're talking to both know what you
mean. When I use the term, I'm typically thinking about all of the Oracle operational timing data that I describe in
Chapter 7. However, if the person you're talking to has a narrower definition, then you might have to do a little extra
work to explain that what you mean is really a union of "working" and "waiting" data that can be obtained, for
example, either from views like V$SESSTAT and V$SESSION_EVENT, or from extended SQL trace data.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 8. Oracle Fixed View Data

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-8-SECT-5

8.5 Exercises

1. If the thought experiment in Section 8.3.7.3 had specified that each of the 100 users had simultaneously
requested one second of CPU capacity, what would the resource profile look like for the 100-second interval?

2. Using V$SQL consumes less server capacity than using V$SQLAREA. Use extended SQL trace data to explain
why.

3. Experiment with vprof. Try the following time scope experiments:

� Mark t0 and then wait several seconds before executing the first database call in the targeted session.

� Mark t0 immediately preceding the first database call in the targeted session.

� Mark t0 in the midst of a long-running SQL statement's execution in the targeted session.

� Mark t1 immediately after the conclusion of the final database call in the targeted session.

� Mark t1 several seconds after the conclusion of the final database call in the targeted session.

� Mark t1 in the midst of a long-running SQL statement's execution in the targeted session.

4. Describe the challenges that prevent us from constructing a utilization report that shows utilization by Oracle
kernel wait event. For example, imagine a system with the following three indications:

� There have been 1,000,000 seconds of waiting for disk I/O events since instance startup.

� The instance startup occurred 500,000 seconds ago.

� The system has six disks, so how much can we know about per-disk utilization since instance startup?

What conclusions can you draw from these observations?

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part II: Reference

Chapter 9. Queueing Theory for the Oracle Practitioner

Professionals can argue forever about how best to improve system performance unless there's a way to prove who's
right. One way to validate performance improvement conjectures is by trial and error. The problem with trial-and-
error performance optimization is that, on average, it's hugely expensive. It costs so much money and time to try each
scenario that, frequently, the number of scenarios that a company can afford to test is very small. Often, a company
runs out of time or money before finding a satisfactory solution.

Trial and error has hope of being efficient only if some kind of intelligence guides the process of choosing which trial
to try next. Such choices are usually based upon some combination of experience, intuition, and luck. However,
experience, intuition, and luck are what drive those endless debates:

Analyst: We upgraded to faster CPUs at my former client, and everything became 50% faster
overnight. We should upgrade CPUs here immediately, and just cut out the performance problem at its
knees.

Other analyst: Well, I think that's a waste of time and money. The last seven projects that I've seen
upgrade to faster CPUs regretted the investment, because the upgrade didn't produce any real impact.
One of my recent clients upgraded to faster CPUs, and parts of the application actually got slower.

So, who's right? It is certainly possible that each of the phenomena described here did in fact happen the way the teller
is telling it. But which one of these experiences might best describe your near future? I'll answer in the form of a more
blatantly comical hypothetical dialogue amidst two well-meaning but incompetent analysts who are trying to figure
out whether a particular glass is large enough to hold a quantity of water that is stored in a pitcher:

Analyst: We poured water from a pitcher into a glass at my former client, and I can assure you that the
glass quite comfortably held the entire content of the pitcher. I say we should dump the water into the
glass.

Other analyst: Well, I think it's a disaster waiting to happen. The last seven times I've watched people
try to empty pitchers into glasses, the glasses weren't big enough to hold all the water. One of my
recent clients poured water from a pitcher into a glass, and the results were horrific. Water went
everywhere.

The solution to this argument is clear: stop guessing. Measure how much water is in the pitcher. Measure the capacity
of the glass. If the quantity in the pitcher exceeds the capacity of the glass, then don't pour. Otherwise, pour away.

As long as you can measure the quantity of water in the pitcher and the capacity of the glass, you don't have to try the
experiment to be reasonably certain of how it would turn out. It's an extremely simple example of a mathematical
model. The benefit of the model is an ability to predict the future without having to actually try it first. Of course, we
could complicate the model by integrating factors such as the likelihood of spills depending upon the shape of the
pitcher's mouth, the steadiness of the pourer, and so on. The smartest solution is to choose the simplest model that
produces results that meet our accuracy requirements.

Maybe the analogy would have been more accurate if I had used moon rocks instead of
water. Like application workload, moon rocks have irregular shapes that are difficult to
model, and they are incredibly expensive to obtain for testing.

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-9

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 9. Queueing Theory for the Oracle Practitioner

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-9-SECT-1

9.1 Performance Models

Computer performance models are more complicated than the water problem model, but not so complicated as to be
inaccessible. The difficult part of performance modeling is that constructing the model requires some mathematical
sophistication. But the hardest work has already been done for you. Over the course of nearly a century, scientists
have developed a branch of mathematics called queueing theory to model the performance of systems like yours. This
chapter describes how to use one particular queueing theory model that reliably answers questions like these:

� How much faster will the application function f perform for n users if I add k CPUs to my system? What if I
replace my existing CPUs with units that are p percent faster?

� How much slower will application function f become if I add n users of f into my system's current workload?

� How many CPUs will my system need if we require that p percent of executions of f must complete in r
seconds or less?

� How much faster will f perform for n users if we can eliminate p percent of the code path for f?

� Which is better suited to my needs, a system with m really fast CPUs? Or a system with m + n slower CPUs?

This book contains no derivations of queueing theory formulas. A number of excellent resources are available to help
you if you would like to study why queueing theory works. My aim in this chapter is to explain how to use queueing
theory as a tool in real-world Oracle performance improvement projects. To this end, this textbook includes a field-
tested queueing theory model implemented in Microsoft Excel. This chapter describes the model and how to use it.

If you are interested in the study of queueing theory, there are several excellent references
available. My favorites include [Gross and Harris (1998); Gunther (1998); Jain (1991);
Allen (1994); and Kleinrock (1975)].

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 9. Queueing Theory for the Oracle Practitioner

9.2 Queueing

Computer applications are all about requesters that demand things and providers that supply them. Oracle
performance analysis is all about the relationships between the suppliers and demanders, especially when competition
for shared resources gets intense.

Queueing is what happens when a requester demands service from a resource that happens to be busy serving another
request. Most of us queue every day for busy resources. It's simple: you wait until it's finally your turn. Different
cultures engage different queue disciplines. Many cultures engage the egalitarian discipline of granting service in the
same order as the arrivals occurred, which is called a first-come, first-served discipline. Other cultures engage a
priority discipline in which, for example, the status of the request affects the order of service. Examples of other
queue disciplines include: insiders-first, royalty-first, sharpest-elbows-first, and meekest-last.

After you've "waited your turn," then you receive the service you asked for, which of course takes a bit more time.
Then you get out of the way, and the person that was behind you in the queue gets service for his request. People
queue for things like dinner tables, tellers, ticket agents, elevators, freeways, and software support hotlines. Computer
programs queue for resources like CPU, memory, disk I/O, network I/O, locks, and latches.

9.2.1 Queueing Economics

Queueing of course gives you the distinct feeling that you're wasting your time. One way to reduce your queuing time
is for your service provider to upgrade the quality or number of the resources that you're using. With faster resources
or more resources, or both, your time in the queue would decrease. But, of course, the people providing your service
would typically pass the cost of those improved resources on to you through higher prices for their service. In the end,
it's your decision where to set the economic tradeoff between faster service and cheaper service.

We optimize to economic and response time constraints every day of our lives. For example, many of us pay
thousands of dollars to own an automobile. Although bicycles are much cheaper to own and operate than automobiles,
we buy cars in part because they are so much faster, thus providing significantly better response times for our travels.
(We Americans are of course famously prone to using automobiles even in circumstances in which using a bicycle
would be not only cheaper, but actually faster.)

Once we own a car, we find that further optimizations are necessary. For routine errands, a car that goes 200 mph
(about 325 km/h) is no more time-efficient than a car with a 60-mph top speed (about 100-km/h), because traffic laws
and safety concerns constrain your velocity more than your car's performance limitations do. Consequently, even
people with fast cars plan their errands so they won't have to compete with rush-hour traffic. Some of our
optimization tactics reduce service time. Some of our optimization tactics reduce queueing delay. The best win-win
for you and your users occurs when you can convert a minimal investment into a reduction in service time, queueing
delay, or both.

"Queueing" Versus "Queuing"

All queueing theorists who write about queueing must decide about whether to spell the word with two
occurrences of the letter "e" or just one. My word processor's spell-check tool originally informed me (as
did many dictionaries) that "queueing" is supposed to be spelled without the extra "e", as queuing.
However, the accepted standard in the field of queueing theory (see
http://www2.uwindsor.ca/~hlynka/qfaq.html for details) is to spell the word as "queueing." Happily, this
spelling is a prescribed alternate in both the Oxford English Dictionary and the Oxford American
Dictionary.

Page 1 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

9.2.2 Queueing Visualized

In Chapter 1 I explained that a sequence diagram is a convenient way to denote how a user action consumes time as it
visits different layers in a technology stack. Figure 9-1 shows a sequence diagram for a system with one CPU and one
disk. A user making a request of the system motivates the consumption of CPU and disk capacity, arranged in time as
shown in the drawing. In a sequence diagram, each line represents the capacity of a resource through time. Each
shaded block on a resource's timeline represents a request's use of that resource. The length of each shaded block is
proportional to the amount of time consumed at the resource. Portions of a timeline that do not contain a shaded block
represent idle time. Read a sequence diagram from top to bottom. A left-to-right arrow represents demand for service,
and a right-to-left arrow represents supply. Response time is the duration that elapses from the initiation of a request
until fulfillment of the request.

Figure 9-1. A sequence diagram is a convenient way to denote how an operation consumes time

In Figure 9-1, an application user makes a request for service of a CPU. In this drawing, the CPU is unoccupied at the
time it receives the request, so CPU service begins immediately upon receipt. As the request consumes CPU time, the
system computes that a disk request must be fulfilled in order to continue. The CPU issues a service demand of the
disk. The disk is unoccupied at the time it receives the request, and so the disk service begins immediately upon
receipt. Upon completion of the disk service request, the disk returns the desired result back to the CPU, which
continues as before. After the third CPU request, the original user demand has been satisfied, and the CPU supplies
the result back to the user.

The response time from the user's perspective is the time that elapses from the user's request until fulfillment of that
request. Note that Figure 9-1 depicts several other response times as well. For example, the length of the first (i.e.,
topmost) shaded bar on the Disk timeline is the response time, from the CPU's perspective, of the first disk I/O call.

The sequence diagram is an especially useful tool for understanding the impact of competition for shared resources on
a multitasking system. For example, Figure 9-2 shows why response time can degrade if we add workload onto the
system shown in Figure 9-1. Requests for CPU service are fulfilled without delay on the system in its unloaded state
(case a).

Figure 9-2. Executing only one application function on an unloaded system leaves idle CPU capacity (case a).
The presence of other workload (case b) results in fewer wasted CPU cycles, but at the expense of degraded

response time for our original application function

Page 2 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-9-SECT-2

When we add load to the system (case b), some of our requests for CPU service must wait because the CPU is busy
servicing other workload at the time of the request. Figure 9-2 shows two such queueing delays. The second request
for CPU service after control returns from the disk must wait because the CPU is already occupied with the lighter-
shaded workload element. And the third request for CPU service waits again for the same reason. The amount of total
response time degradation from the system in its unloaded state (case a) to the system in its loaded state (case b) is
precisely the total duration that our service requests have spent queued for a busy resource.

How much response time degradation can we expect to incur as we add load to a system? The tool that is designed to
answer this important question and many others is called queueing theory.

Page 3 of 3O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 9. Queueing Theory for the Oracle Practitioner

9.3 Queueing Theory

Queueing theory is a branch of mathematics dedicated to explaining the behavior of queueing systems. The sequence
diagram demonstrates a fundamental relationship of queueing theory:

R = S + W

Response time equals service time plus queueing delay. Service time is the amount of time spent actually consuming a
requested resource, and queueing delay is the duration that a request spends waiting in a queue.

Figure 9-3 shows the R = S + W relationship in a graph. Response time on the vertical axis responds to changes in
system utilization on the horizontal axis. As you have already seen in the sequence diagram example, service time
remains constant for all system load levels. However, queueing delay degrades (that is, increases) exponentially in
response to increases in workload. Adding the variant queueing delay to the constant service time for each possible
system utilization value produces the famous response time curve that is shaped like an ice hockey stick (Figure 9-4).

Figure 9-3. The fundamental relationship of queueing theory: R = S + W. Service time (S) remains constant at
all load levels; however, response time (R) degrades under high loads because queueing delay (the distance

from S to R) degrades exponentially as utilization increases

Figure 9-4. A hockey stick

Page 1 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

9.3.1 Model Input and Output Values

Queueing theory provides enormous value to the performance analyst by allowing us to predict system response times
in hypothetical situations. Sensibly applied queueing models can reveal future performance problems very nicely,
without incurring the cost of actually trying different system configurations. For example, if a CPU upgrade is
destined not to improve your performance, it's a lot cheaper to figure it out in Excel than to learn by actually
implementing and testing a hardware upgrade.

But perhaps even more important is how queueing theory structures our thinking about response time. It highlights the
very important distinction between time spent working and time spent waiting. The competent use of queueing theory
forces us to understand the interrelationships and sensitivities of various performance optimization parameters. It
forces us to see more clearly what is relevant and what is not.

You have already seen the fundamental result of queueing theory: response time equals service time plus queueing
delay, or R = S + W. You have seen that when response time degrades as loads increase, the degradation is due to
changes in W, not changes in S. The following sections explain the meanings of the formulas that will enable you to
predict the performance characteristics of a specified system configuration, whether that configuration exists yet or
not. (The entire list of queueing theory formulas used in this book is printed in Appendix C.) I'll begin by explaining
the input parameters that drive these formulas.

9.3.1.1 Arrivals and completions

Most of the things you need to know about queueing theory are very simple to understand. You can think of a
queueing system as a black box that takes input, processes it, and produces output that presumably represents some
improvement upon the input. The number of arrivals that come into the system is denoted as A. The number of
completed requests that exit the system is denoted as C. For any stable queueing system, A = C. That is, in a stable
system, everything that goes into the box comes out, and nothing comes out of the box that didn't go in. If we consider
a specific time period called T, then the ratio λ = A/T (λ is the Greek letter lambda) yields the system's arrival rate,
and X = C/T yields the system's completion rate (or throughput). The mean interarrival time τ = T/A = 1/λ (τ is the
Greek letter tau) is the average duration between adjacent arrivals into a system. Figure 9-5 shows the relationships
among A, T, λ, and τ

Figure 9-5. This two-second interval illustrates the relationships among the fundamental parameters A, T, l,
and t, which describe a queueing system's arrivals

9.3.1.2 Service channels, utilization, and stability

Inside a queueing system—the "black box" that I mentioned before—there can be one or more service channels. Each
service channel operates independently of other service channels to provide service in response to requests arriving at
a given queue. For example, a symmetric multiprocessing (SMP) computer system with 8 CPUs servicing a single
CPU run queue can be modeled as a single system with eight parallel service channels. The number of parallel service
channels inside the system is denoted as m, c, and s in various texts. In this text, I have chosen to use m as in
[Kleinrock (1975)].

Page 2 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The total amount of time that service channels inside the system spent actually fulfilling service requests is denoted as
B, for busy time. Total system utilization for a given time interval is the proportion of the interval that the system was
busy, U = B/T. If you have more than one service channel inside your system (if m > 1), then U can be greater than
1.0. Most people find this statistic disturbing until they normalize it to produce a per-channel average utilization. The
mean utilization per channel is then ρ = U/m (ρ is the Greek letter rho). The quantity ρ is also called a system's traffic
intensity. Notice that having a mean utilization per channel of ρ does not mean that every channel has a mean
utilization of ρ. For example, an eight-channel system can achieve ρ = 0.5 in any way between the extremes of four
channels running at 100% and four others at 0%, to all eight channels running at exactly 50%.

A queueing system is said to be stable if and only if its per-server utilization is in the range 0 ρ < 1. As you use

queueing models, you will find it possible to model hypothetical systems for which ρ 1. For example, as you drive
arrival rates higher and higher, you can make it so that the system can't keep up unless it could operate at a utilization

in the domain ρ 1. However, it is impossible to drive a system at ρ 1 in reality.

9.3.1.3 Service time and service rate

We have already discussed the service time for a system. More formally, a system's expected service time is the
average amount of time that a service channel spends busy per completion, or S = B/C. Computing service time is
usually easy, because on most systems it is easy to measure busy time and completion counts. Sometimes it is more
convenient to discuss the service rate instead of service time. The service rate is the number of requests that a single
service channel can complete per time unit, µ = C/B (µ is the Greek letter mu), or equivalently, µ = 1/S.

9.3.1.4 Queueing delay and response time

As you have seen, a system's expected queueing delay (W) is simply the amount of time that you should expect to
elapse between a request's arrival into the system and the time at which service begins. For your request, queueing
delay is thus the sum of the expected service times of the requests that arrived at the queue ahead of you. Predicting
queueing delay is one of the wondrous rewards of queueing theory. Queueing delay depends not only upon the
average service time at the device in which you're interested, it also depends upon the number of people that are
expected to be waiting when you get there.

The formula for predicting queueing delay is difficult to understand without a good bit of study, but fortunately the

The Motive for the Greek Letters

One aspect of queueing theory that makes the field inaccessible to a lot of Oracle performance analysts is
that the formulas look really difficult. It doesn't help that a lot of the basic concepts are expressed in
Greek letters. Many colleagues asked me during the preparation of this text to consider converting each
Greek letter used in this chapter to something chosen from the Latin alphabet. (If I'm not mistaken, the
event at which they pleaded with me to do this is called an "intervention.")

I've chosen to remain faithful to the notation used in the well-established literature of queueing theory. I
believe that creating a "new" notation for this text would be pretentious of me, and in the long term it
wouldn't help you either. Assuming that I would have converted all the Greek symbols to something
"more comfortable" without introducing new errors in the notation, I would have left you with a notation
that wouldn't match anything else you'd ever study. The formulas would still be ugly, even "in
English"—trust me. If I had converted Greek letters to Latin letters, I would have only penalized readers
who actually wanted to study queueing theory by making them learn the technology in two different
languages.

The Greek letter problem really isn't that bad anyway. In this chapter, you'll encounter only the Greek
letters λ; (lambda), µ (mu), ρ (rho), τ (tau), θ (theta), and Σ (which is the letter sigma, but which should
be read as "sum of"). Other chapters of course include the letter ∆ (delta) and maybe others. A complete
list of Greek symbols and their English names is included in Appendix A.

Page 3 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

hard work of constructing the formula has been done for us. For an M/M/m queueing system (the exact definition of
which appears later in this chapter), the answer is:

where:

The hardest part was the formula for C(m, ρ), which was completed in 1917 by a Danish mathematician named Agner
Erlang [Erlang (1917)]. The Erlang C formula produces the probability that an arriving request will queue for service.

Programming Erlang C requires a bit more mathematical sophistication than most of us bring to the game. However,
in 1974, a research scientist named David Jagerman developed a fast algorithm for computing Erlang C [Jagerman
(1974)] that makes it easy to calculate a system's expected queueing delay. I have used Jagerman's algorithm in
Example 9-1.

Example 9-1. This Visual Basic code uses Jagerman's algorithm to compute Erlang C

Function ErlangC(m, Rho) As Double
' Erlang's C formula, adapted from [Gunther (1998), 65]
 Dim i As Integer
 Dim traffic, ErlangB, eb As Double
 ' Jagerman's algorithm
 traffic = Rho * m
 ErlangB = traffic / (1 + traffic)
 For i = 2 To m
 eb = ErlangB
 ErlangB = eb * traffic / (i + eb * traffic)
 Next i
 ErlangC = ErlangB / (1 - Rho + Rho * ErlangB)
End Function

Once you know a system's expected service time and its expected queueing delay, computing the expected response
time is trivial, as we have already explored. A system's expected response time is simply its expected service time plus
its expected queueing delay, R = S + W.

Figure 9-6 depicts an m-channel queueing system. Requests arrive at an average rate of λ requests per time unit. The
duration between successive request arrivals is the interarrival time τ. Each of m parallel channels completes service
requests at an average service rate of µ requests per time unit, consuming an average service time of s time units per
request.

Figure 9-6. This drawing of a multi-channel queueing system illustrates the fundamental relationships among
several queueing theory parameters (adapted from [Jain (1991) 511])

Don't confuse the C used to denote the Erlang C formula with the C that denotes the
number of completions in a system. It is usually easy to tell the two C's apart by context,
because the Erlang C formula is always depicted as a function with two arguments.

Page 4 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

9.3.1.5 Maximum effective throughput

The maximum effective throughput of a system is the largest arrival rate that we can ask that system to process
without exceeding a user's response time tolerance rmax. The maximum effective throughput for the system shown in

Figure 9-7 is the quantity λmax. As the rate of arrivals into the system increases, the average queueing delay increases,

and system response time degrades. The throughput value at which the system's response time degrades beyond the
users' threshold for response time degradation is the system's maximum effective throughput, λmax. It's the most work

you can ask of a system without driving average response times too high.

Figure 9-7. Response time is a function of arrival rate. Specifying an average response time tolerance rmax

determines the location of λλλλmax, which is the largest completion rate value that this system can sustain without
driving the average response time above the users' tolerance

Page 5 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

To maintain satisfactory response times, you have to keep your system's arrival rate less than λmax, so of course it is

important that you know how to compute its value. There is no closed form solution for computing the value of λmax,

but estimating the value using interval bisection is fast and straightforward. Example 9-2 provides Visual Basic code
to perform the computation.

Example 9-2. This Visual Basic code uses interval bisection to compute maximum effective throughput

Function LambdaMax(Rmax, q, m, mu) As Double
' Maximum effective throughput of queueing system
' ASSUMPTION: ResponseTime() is a monotonically increasing continuous
' function
 Const error = 0.005 ' interval bisection halts when
 ' abs(lambda1-lamba0) <= error*lambda0
 Dim lambda0 As Double ' lambda value for which R < Rmax
 Dim lambda1 As Double ' lambda value for which R >= Rmax
 Dim lambdaM As Double ' arithmetic mean of {lambda0, lambda1}
 ' Seek an interval [lambda0, lambda1] for which R(lambda0)<Rmax and
 ' R(lambda1)>=Rmax
 lambda0 = 0
 lambda1 = 1
 While ResponseTime(m, mu, Rho(lambda1 / q, m, mu)) < Rmax
 lambda0 = lambda1
 lambda1 = 2 * lambda1
 Wend
 ' Narrow the interval by iterative bisection
 While Abs(lambda1 - lambda0) > error * lambda0
 lambdaM = (lambda0 + lambda1) / 2
 If ResponseTime(m, mu, Rho(lambdaM / q, m, mu)) < Rmax Then
 lambda0 = lambdaM
 Else
 lambda1 = lambdaM
 End If
 Wend
 LambdaMax = (lambda0 + lambda1) / 2
End Function

9.3.1.6 Cumulative distribution function (CDF) of response time

There is a problem with using maximum effective throughput as a performance measure, however. The problem is
that users don't usually have a tolerance in mind for average response time; what they really have in mind is a
tolerance for worst-case response time. The word "tolerance" connotes attention to some maximum value more often
than it connotes attention to an average. For example, imagine the following dialog:

User: My order entry form is too slow. We agreed that my response time tolerance for the commit at
the end of the form would be 1.5 seconds, but my response time is less than 1.5 seconds in only about
63.2% of cases.[1]

System manager: Actually, that's exactly what we agreed. We agreed only that your average response
time for your order entry form would not exceed 1.5 seconds, and you have just admitted that we are
meeting that goal.

[1] I selected the number 63.2% carefully for this example. It happens to be the CDF of the exponential distribution
at its mean. By constructing my example dialog this way, the user is observing the behavior of a system whose mean
response time is roughly 1.5 seconds.

The information provider has abided by the letter of the service level agreement, but the system is not meeting the

Example 9-2 refers to objects such as the variable q and the function ResponseTime that
are defined in the Microsoft Excel workbook provided on the catalog page for this book:
http://www.oreilly.com/catalog/optoraclep.

Page 6 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

spirit of the user's wishes. The response time goal that the users really wish they had specified is probably something
like this:

The commit at the end of the order entry form must complete in 1.5 seconds or less, for at least 95 out
of every 100 user executions.

Or, to generalize:

Function f must complete in r seconds or less in at least p percent of executions of the function.

Functionally, a statement of this form is a very useful basis for a contract between an information consumer and the
information provider. The statement reminds the provider that users are intolerant of response times for the function
that are in excess of a specific value. The statement reminds the consumer that it is impossible to guarantee that no
user will ever be dissatisfied with the performance of a given function, but that the provider has committed to limit the
disappointment to some negotiated percentage of executions.

As you might expect, queueing theory gives us the mathematical means to compute the things we need in order to
make service level agreements in this useful format. One final queueing theory formula gives the means to compute
the minimum level of investment into system resources that is required to satisfy the system's performance
requirements within its owner's economic constraints. The cumulative distribution function (CDF) of response time

allows us to compute the probability P(R r), which is the likelihood that a given request will be fulfilled with total
response time less than or equal to some response time tolerance r. This quantity is perhaps the most useful statistic
emitted from a queueing model, because it is a direct measure of user satisfaction with response time.

The formula for the CDF of response time is complicated. For the particular queueing model (called M/M/m) that I
shall describe later in this chapter, the formula is the following [Gross and Harris (1998) 72-73]:

where Wq(0) is:

and p0 is:

Example 9-3 shows how you can accomplish all this in plain old Visual Basic.

Example 9-3. This Visual Basic code computes the cumulative distribution (CDF) of response time of an
M/M/m queueing system

Function p0(m, Rho) As Double
' Compute P(zero jobs in system) [Jain (1991), 528]
 Dim i, n As Integer
 Dim t, term2, term3 As Double
 term2 = 1 / (1 - Rho)
 For i = 1 To m
 term2 = term2 * (m * Rho) / i
 Next i
 term3 = 0
 For n = 1 To m - 1
 t = 1

Page 7 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

 For i = 1 To n
 t = t * (m * Rho) / i
 Next i
 term3 = term3 + t
 Next n
 p0 = (1 + term2 + term3) ^ (-1)
End Function

Function Wq0(m, Rho) As Double
' Compute Wq(0) [Gross & Harris (1998) 72]
' Note that r = m*rho, c = m in G&H's notation
 Dim i As Integer
 Dim f As Double ' (r^c)/(c!) factor
 f = 1
 For i = 1 To m
 f = f * (m * Rho) / i
 Next i
 Wq0 = 1 - f * p0(m, Rho) / (1 - Rho)
End Function

Function CDFr(r, m, mu, Rho) As Double
' CDF of the response time. This wrapper function is necessary because
' the formula in [Gross & Harris (1998), 73] contains a singularity.
 Const epsilon As Double = 0.000000001
 If (Abs(m * (1 - Rho) - 1) < epsilon) Then
 CDFr = (CDFr2(r, m, mu, Rho - epsilon) + CDFr2(r, m, mu, Rho + epsilon)) / 2
 Else
 CDFr = CDFr2(r, m, mu, Rho)
 End If
End Function

Function CDFr2(r, m, mu, Rho) As Double
' CDF of the response time, adapted from [Gross & Harris (1998), 73]
' Note that r = m*rho, c=m, lambda=rho*m*mu, t=r in G&H's notation
 Dim w As Double ' Wq(0) value
 Dim cdf1, cdf2 As Double ' complicated terms of CDF formula
 If (Rho >= 1 Or r <= 0) Then
 CDFr2 = 0
 Exit Function
 End If
 w = Wq0(m, Rho)
 cdf1 = (m * (1 - Rho) - w) / (m * (1 - Rho) - 1) * (1 - Exp(-mu * r))
 cdf2 = (1 - w) / (m * (1 - Rho) - 1) * (1 - Exp(-(m * mu - Rho * m * mu) * r))
 CDFr2 = cdf1 - cdf2
End Function

How I Figured Out That Jain's CDF Formula Is Incorrect

The Jain formula for the CDF of response time [Jain (1991), 528, 531] has bothered me for a long time.
The formula contains the expression:

Without even understanding what this formula means, the presence of the two identical terms -e-µr is the
thing that has worried me. Why would the author or his copyeditor not catch the two identical terms and
combine them into the single term -2e-µr? The most likely explanation, I figured, was that the formula
suffered from a typographical error of some sort.

So I created a test. I began by choosing an arbitrary integer value for m. Using Mathematica, I generated
a random service time s1 from an exponential distribution with some arbitrarily chosen mean 1/µ. Next, I

generated a random interarrival time t1 from an exponential distribution with an arbitrarily chosen mean

1/λ. Using the R = S + W formula described earlier, I computed the expected response time of the system
whose service time and interarrival time were the two random numbers I generated. Using the input
values m, µ = 1/s1, and λ = 1/t1, the calculation of R was easy.

Page 8 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

9.3.2 Random Variables

One tricky thing about real queueing systems is that arrivals don't enter the system at completely predictable times. (In
fact, if requests arrive into a system at uniform intervals and if service times are constant, there will be no queueing
unless the system is unstable.) For example, we may have evidence that the requests of a telephone system arrive at an
average rate of 2.0 requests per second, but in real-life systems, it is almost never reasonable to expect that requests
will arrive at a rate of exactly one every 0.5 seconds. Indeed, in most real systems we expect arrivals to be scattered
randomly through time. We expect behaviors averaged across large numbers of requests to be predictable, but we
expect individual arrival times to be unpredictable.

9.3.2.1 Expected value

Mathematicians use the term "random variable" to describe the behavior of an unpredictable process. A random
variable is simply a function whose value is a random number. The expected value E[X] of a random variable X is the
mean (or average) of the values that X takes on. In many probability and statistics texts, a bare uppercase letter like X
refers to a random variable, which has several properties, among which are its expected value and its distribution
(defined in a moment). Queueing theory texts often use an uppercase letter to denote both a random variable and its
expected value. The readers of those books are expected to understand by context which concept is being referenced.
This book follows the same convention. For example, I use R = S + W instead of the more technically precise but
cumbersome E[R] = E[S] + E[W].

9.3.2.2 Probability density function (pdf)

Although a random variable has, by definition, a random number value, the process through which values appear in
nature is usually endowed with some sort of order. For example, on the telephone system whose average rate of
arrivals is 2.0 requests per second, it may be possible for 200 requests to arrive in a given second, but it may be very
unlikely. The mathematical function that models a random variable's likelihood of taking on a given value is called
that random variable's distribution. Specifically, the probability that a discrete random variable X will take on a
specified value x is called that variable's probability density function (or pdf), denoted f(x) = P(X = x) [Hogg and
Tanis (1977) 51-58].

9.3.2.3 Using the pdf

Because the exact arrival time for the next incoming request cannot be predicted exactly, a system's interarrival time
is a random variable. Thus, the arrival rate (the reciprocal of arrival time) is a random variable as well. Agner Erlang
showed in 1909 that the arrival rate of phone calls in a telephone system often has a Poisson distribution [Erlang
(1909)]. Specifically, if telephone calls arrive randomly at an average rate of λ > 0, then the pdf of the arrival rate has
the form:

Thus, if telephone calls arrive at an average rate of λ = 2 calls per second, then the probability that there will be 200

I repeated this test several millions of times (for several millions of random service time si values chosen
from the exponential distribution with mean 1/µ, and the same number of random interarrival rate ti

values chosen from the exponential distribution with mean 1/λ). I stored the results. Then, for some
arbitrarily chosen response time value r, I simply counted the number of response times generated by my
test that were less than r. The proportion of response time numbers that were less than r should have
approximately matched the value of Jain's CDF. (This is the definition of how the CDF should behave.)

But Jain's formula consistently failed to match the results of my test. By contrast, the Gross and Harris
CDF formula [Gross and Harris (1998) 72-73] consistently succeeded in matching the result of my test. I
have attempted to contact Dr. Jain with the results of my testing, but as of the time of this writing, I have
not yet received a response.

Page 9 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

calls in a given second is only f(200) = 2.7575 x 10-316; in other words, if the telephone call arrival process is truly
Poisson distributed with λ = 2, then it is more likely that you could deal fifty-four straight royal flush poker hands
than to ever observe a one-second interval in which 200 calls would occur. On the other hand, there's a much greater
probability that a one-second interval will contain exactly zero, one, two, three, or four arrivals. The pdf of the
Poisson distribution with mean λ = 2 is shown in Figure 9-8. Conveniently, arrival rates in many computer
applications, including many aspects of Oracle systems, also have a Poisson distribution.

Figure 9-8. The probability density function (pdf) for the Poisson distribution with λλλλ = 2 shows the probability
P(A = x) that there will be exactly x arrivals in a one-second observation interval

It is, of course, no coincidence that the symbol λ (lambda) chosen to denote the average arrival rate of a queueing
system is the same symbol used to denote the mean of a Poisson distribution. It's actually the other way around. As I
shall divulge shortly, the specific M/M/m queueing theory model that is covered later in this chapter works only if a
system's arrival process is Poisson distributed with mean λ. The arrival rate in queueing theory is called λ because it is
the mean of a Poisson distribution.

A system's service time is also a random variable. For example, the time it takes a bank teller to count your money is
predictable in the aggregate, but unpredictable in a specific case. Even the CPU time required to process an Oracle
LIO is unpredictable. An Oracle logical I/O (LIO) is the operation that the Oracle kernel uses to fetch a single block
from the Oracle database buffer cache. For example, a CPU might service an average of 40,000 LIO requests per
second (that is, µ = 40000), but from one second to the next, a CPUs service rate might vary significantly.
Randomizing factors include the type and complexity of an Oracle block (e.g., whether the block is an index block or
a table block), the varying number of rows in each Oracle block, and the varying column widths of data within those
blocks.

9.3.2.4 Why understanding distribution is important

It is crucial to know a random variable's distribution before you can use that random variable's mean (expected value)
in any predictive formulas. For example, you might say that customers arrive at a restaurant at an average rate of two
customers per minute during lunchtime; thus, the expected interarrival time is 30 seconds. However, the average
doesn't tell the whole story. If you know only the expected interarrival time, then you can't tell, for example, whether
individual customers are really arriving exactly 30 seconds apart, or if they're arriving in groups. If you know only
that requests have an expected interarrival time of 30 seconds, then for example we cannot know which—if either—of
the cases in Table 9-1 has occurred.

Table 9-1. Two very different scenarios both lead to an expected interarrival time of ττττ = 30 seconds

Time interval Number of arrivals

 Case I Case II

Page 10 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

If reality consistently resembles Case I, then you shouldn't expect a mathematical formula to produce a reliable
prediction of what happens between 1:00 p.m. and 1:15 p.m., if you tell the formula that your "average arrival rate is
120 arrivals per hour." For a queueing model to produce reliable results, you need to tell it something more about the
properties of its random variable input parameters than just an average. You must also tell the model about each
random variable's distribution.

9.3.3 Queueing Theory Versus the "Wait Interface"

Now that you've seen the definition for each of the formulas of queueing theory, how do Oracle operational data fit
in? Specifically, how does information obtained from the so-called wait interface fit into queueing theory?
Unfortunately, Oracle Corporation teaches inaccurate information on this topic. Oracle MetaLink article 223117.1 is
an example:

Performance tuning is based on the following fundamental equation:

Response Time = Service Time + Wait Time

In the context of an Oracle database, "Service Time" is measured using the statistic "CPU used by this
session" and "Wait Time" is measured using Wait Events [my emphasis].

The emphasized portion of this statement is false. A so-called Oracle wait event is not what this statement says it is.

9.3.3.1 Oracle wait times

The confusion begins with the name "wait event." It's an unfortunate choice of terminology, because the mere name
encourages people to believe that the duration of an Oracle kernel event is a queueing delay. However, it is not. As
you learned in Chapter 7, the elapsed time of a wait event actually includes lots of individual components. The
response time components for a single OS read call are depicted in Figure 9-9.

Figure 9-9. An Oracle wait time for a system call (like the disk I/O call shown here) is really a response time
that is measured from the Oracle kernel's perspective. The duration ela=t1-t0 is not a queueing delay; it

consists of service times and queueing delays

11:30 a.m. to 11:45 a.m. 0 34

11:45 a.m. to 12:00 noon 0 28

12:00 noon to 12:15 p.m. 240 31

12:15 p.m. to 12:30 p.m. 0 37

12:30 p.m. to 12:45 p.m. 0 24

12:45 p.m. to 1:00 p.m. 0 30

1:00 p.m. to 1:15 p.m. 0 32

1:15 p.m. to 1:30 p.m. 0 24

Average per 0:15 bucket 30 30

Page 11 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The Oracle wait time recorded for a system call execution is the total wall clock time that elapses from the final
instruction before the OS call execution until the first instruction after the return of the OS call. Everything that
happens in that interval between times t0 and t1 is an Oracle wait time. In Figure 9-9, a single Oracle wait time

includes all of the following components:

sCPU

CPU service time consumed to set up the system call. For a disk read call, most of this time is consumed in
kernel running state. However, some system calls may consume CPU in user running state as well.

wdisk

Queueing delay for the disk device, which in this picture includes the transmission latency required for the
request to reach the disk device from the CPU device.

sdisk

Service time for the disk device, including the seek latency, rotational latency, and data transfer latency from
the I/O device back to the memory that is addressable by the CPU.

wCPU

Page 12 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Queueing delay for the CPU, consumed with the process in the ready to run state.

sCPU

Another segment of CPU service time required to complete the system call. Again for different system calls,
some of this CPU capacity may be consumed in kernel running state, and some may be consumed in user
running state.

I hope you can see clearly now that an Oracle wait time for an OS read call is definitely not a measure of wdisk. Other

system calls behave similarly.

9.3.3.2 Differences in queueing theory notation

Studying different queueing theory books tends to even further confuse the issue of what kind of quantity an Oracle
wait time really is. While most of the Greek letters retain consistent meaning across different texts, different authors
use different notation for their fundamental queueing theory formula, as shown in Table 9-2.

I have rearranged the terms on the right-hand side of each of these equations so that all of the equations represent
exactly the same concept. In other words, Gunther's and my W is exactly the same thing as Gross and Harris's Tq and

Wq, which are exactly the same thing as Kleinrock's wn. It can be especially confusing when different books use the

same words to mean completely different things. For example:

Expected steady-state system waiting time W equals service time 1/µ plus line delay Wq [Gross and

Harris (1998) 64].

Response time R equals service time S plus time spent waiting in the queue W [Gunther (1998) 52].

Gross and Harris use the term "waiting time" to mean what Gunther calls "response time." Furthermore, notice that
the two sets of authors use the term "wait" to mean two completely different things. Considering the R = S + W
notation for a moment, Gross and Harris are calling R a wait, while Gunther calls W a wait. An Oracle wait time is
closer in spirit to the Gross and Harris definition than to the Gunther definition.

Who's right? The choice of words doesn't matter, as long as the concepts represented by those words aren't
intermingled. I've chosen notation that resembles what Jain and Gunther use, principally because those were the first
two books on queueing theory that I studied. However, it's fine to call R, S, and W by any name that you like. It is not
correct to regard an Oracle wait time as any single component in the right-hand side of an equation like R = S + W. An
Oracle wait time is really the response time for an operating system call as viewed from the Oracle kernel's
perspective. The Oracle kernel publishes wait times in several places, including the ela statistic in the WAIT lines of
extended trace data, and the following fixed views:

V$SESSION_WAIT.WAIT_TIME
V$SESSION_EVENT.TIME_WAITED
V$SESSION_EVENT.AVERAGE_WAIT

Table 9-2. A sample of queueing theory notations

Notation Source

R = S + W Oracle MetaLink, [Gunther (1998) 84]

T = S + Tq
 [Gross and Harris (1998) 11]

W = 1/µ + Wq
 [Gross and Harris (1998) 71]

sn = xn + wn
 [Kleinrock (1975) 198]

Page 13 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-9-SECT-3

V$SESSION_EVENT.MAX_WAIT
V$SESSION_EVENT.TIME_WAITED_MICRO
V$SYSTEM_EVENT.TIME_WAITED
V$SYSTEM_EVENT.AVERAGE_WAIT
V$SYSTEM_EVENT.TIME_WAITED_MICRO

Each of these statistics refers to a quantity of time that does include a queueing delay for the device being requested,
but an Oracle wait time includes many other response time components as well. Specifically, an Oracle wait time is
not the W of an R = S + W equation from queueing theory.

Page 14 of 14O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 9. Queueing Theory for the Oracle Practitioner

9.4 The M/M/m Queueing Model

The M/M/m model is a set of mathematical formulas that can predict the performance of queueing systems that meet
five very specific criteria. The notation M/M/m is actually shorthand for the longer notation M/M/m/ /FCFS, which
completely describes all five criteria:

M /M/m/ /FCFS (exponential interarrival time)

The request interarrival time is an exponentially distributed random variable. I shall discuss the meaning of
this statement later in this section.

M/M /m/ /FCFS (exponential service time)

The service time is an exponentially distributed random variable.

M/M/m/ /FCFS (m homogeneous, parallel, independent service channels)

There are m parallel service channels, all of which have identical functional and performance characteristics,
and all of which are identically capable of providing service to any arriving service request. For example, in an
M/M/1 system, there is a single service channel. In an M/M/32 system, there are 32 parallel service channels.

M/M/m/ /FCFS (no queue length restriction)

There is no restriction on queue length. No request that enters the queue exits the queue until that request
receives service.

M/M/m/ /FCFS (first-come, first-served queue discipline)

The queue discipline is first-come, first-served (FCFS). The system honors requests for service in the order in
which they were received.

9.4.1 M/M/m Systems

These five criteria happen to be remarkably fitting descriptions of real phenomena on Oracle systems. M/M/m

Why "M" Means Exponential

You might wonder why queueing theorists use the letter "M" instead of "E" to denote the exponential
distribution. It is because "E" denotes another distribution, the Erlang distribution. Faced with the choice
of letters other than "E" to denote the exponential distribution, mathematicians chose the letter "M"
because the exponential distribution has a unique "Markovian" (or "memoryless") property. Other letters
used in this slot for other models include "G" for general, "D" for deterministic, and "Hk" for k-stage

hyperexponential distributions.

Page 1 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

queueing systems occur abundantly in the human experience. Examples include:

� An airport ticket counter where six ticket agents service customers selected from the head of one long,
winding queue. This is an M/M/6 system.

� A four-lane toll road where one toll booth services the cars and trucks selected from the head of a queue that
forms in each lane. This is four separate M/M/1 systems, each with an average arrival rate chosen
appropriately for each lane.

� A symmetric multiprocessing (SMP) computer system where twelve CPUs provide service to requests selected
from the head of the ready-to-run queue. For reasons of operating system scalability imperfections that I shall
discuss later, an appropriate model for this system is M/M/m, with m chosen in the range 0 < m < 12.

It is clear that all of these examples meet the m, , and FCFS criteria of the M/M/m/ /FCFS model. But it is less
clear without further analysis whether the examples meet the M/M criteria. In the next section, we shall explore what
it means to say that a random variable is exponentially distributed.

9.4.2 Non-M/M/m Systems

Even before learning about the M/M criteria, it is easy to see that not all queueing systems are M/M/m. For example,
the following applications are not M/M/m systems:

� An airport ticket counter where five ticket agents service airline passengers, but first-class and business class
passengers are permitted to cut into the front of the queue. This system violates the FCFS criterion required for
the system to be considered M/M/m.

� An array of six independent computer disks where each disk services I/O requests from the head of its
dedicated queue. This system violates the M/M/6 assumption that all the participating parallel service channels
are identically capable of providing service to any arriving service request. For example, a request to read disk
D can be fulfilled only by disk D, regardless of what other disks happen to be idle. It is possible to model this
system with six independent M/M/1 systems.

� Oracle latch acquisition. Oracle latches are not allocated to requests in the order the requests are made
[Millsap (2001c)]. Therefore Oracle's latch acquisition system violates the FCFS assumption of M/M/m.

Many systems that fit the .../m/ /FCFS criteria of queueing systems fail to meet the M/M criteria because their
arrival and service processes don't fit the exponential distribution. In the next sections, I shall reveal how to test your
operational data for fit to the exponential distribution.

9.4.3 Exponential Distribution

Previously I pointed out that in the early 1900s, Agner Erlang observed that the arrival rate in a telephone system "is
Poisson distributed." The phrase "is such-and-such distributed" means only that the probability density function (pdf)
of the random variable in question fits a particular mathematical form—in this case, the Poisson form. Once we know
the pdf of a random variable, we can compute the probability that this random variable will take on any specific value
in which we might be interested. To say that a random variable is exponentially distributed with mean θ > 0 (the
Greek letter theta) is to say that the variable's pdf is of the form:

Figure 9-10 shows the pdf for an exponentially distributed random variable.

Figure 9-10. The pdf for an exponentially distributed random variable with mean θθθθ = 0.5

Page 2 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

It so happens that many real-life systems have exponentially distributed interarrival times and service times, but we
cannot reliably model a system with M/M/m until we test the system's arrival and service processes. This book
provides everything you need to test whether your system's operational characteristics suit the M/M/m model.

9.4.3.1 Poisson-exponential relationship

Agner Erlang observed that the arrival rate of phone calls in a telephone system obeys a Poisson distribution. Earlier
in this section, I commented that many arrival processes in computer systems, including Oracle systems, are Poisson
distributed as well. Why, then, would I have chosen to show you the M/M/m queueing model, which works only if
interarrival times and service times are exponentially distributed? Why did I not choose a model in which arrival and
service processes were Poisson distributed?

The answer is that, actually, I did choose a model in which arrivals and services were Poisson. The exponential and
Poisson distributions bear a reciprocal relationship [Gross and Harris (1998) 16-22]:

� For a system to suit the criterion defined by the first "M" in "M/M/ m," its request interarrival times must be
exponentially distributed. Remember, however, that the average interarrival time t is the reciprocal of the
average arrival rate (τ = 1/λ). As it happens, an arrival rate with a mean of λ is Poisson if and only if the
corresponding interarrival time is exponential with mean θ = τ = 1/λ.

� For a system to suit the criterion defined by the second "M" in "M/M/m," its service times must be
exponentially distributed. Of course, the average service time S is the reciprocal of the average service rate (S
= 1/µ). A service rate with a mean of µ is Poisson if and only if the corresponding service time is exponential
with mean θ = S = 1/µ.

This is why authors sometimes refer to the M/M/m model as the model for Poisson input and Poisson service.

9.4.3.2 Testing for fit to exponential distribution

The two "M"s of the M/M/m queueing model notation specify that we can use the model only if the interarrival time
and service time are exponentially distributed. That is, we can use M/M/m to model that system's performance only if
the histogram for a system's interarrival times and the histogram for its service rates both resemble the exponential
distribution pdf curve shown in Figure 9-10. Figure 9-11 shows some examples.

Figure 9-11. Examples of random data with varying goodness of fit to an exponential distribution with mean θθθθ
= 0.5

Page 3 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The trick is, how can we tell whether a set of interarrival times or service rates sufficiently "resembles" Figure 9-10?
Statisticians use the chi-square goodness-of-fit test to determine whether a list of numbers is sufficiently likely to
belong to a specified distribution. The Perl program in Example 9-4 tests whether the numbers stored in a file are
likely to be members of an exponential distribution. It produces the verdict "Accept," "Almost suspect," "Suspect," or
"Reject" using the procedure recommended in [Knuth (1981) 43-44]. If you have too few data points to perform the
chi-square test, the program will tell you. If your operationally measured interarrival times and service times receive a
verdict of "Accept" or "Almost suspect," then you can be reasonably certain that the M/M/m model will produce
reliable results.

M/M/m will make reliable predictions only if interarrival times and service times are both exponentially distributed
random variables. Other queueing models produce accurate forecasts for systems with interarrival and service times
that are not exponential. I focus here on the M/M/m model because it is so often well-suited for Oracle performance
analysis projects. On Oracle performance projects, it is normally possible to define useful subsets of system workload
that meet the M/M criteria. For example:

� Executions of batch jobs are easy to test for exponentially distributed interarrival times and service times. A
good batch queue manager records job request times, job start times, and job completion times for later
analysis. A job's interarrival time is simply the difference between the job's request time and the previous job's
request time. A job's service time is merely the difference between the job's completion time and the job's start
time. By collecting 50 or more interarrival times and 50 or more service times, you can determine whether a
given subset of your batch jobs obeys the M/M/m model's M/M criteria.

The important task here is to use M/M/m only for a properly behaved subset of your batch data. For example,
the interarrival times of your batch jobs over a 24-hour period are likely not to be exponentially distributed:
your nighttime interarrival times will likely be much larger than your daytime figures. Likewise, the service
times for all of your batch jobs are likely not to be exponentially distributed. However, the service times for all
your jobs that execute in less than one minute likely will be approximately exponentially distributed.

� The Oracle logical I/O (LIO) is a useful unit of measure for service requests. It is not possible to measure LIO
interarrival times or service times directly in Oracle, but intuition and a track record of successes using
M/M/m to model LIO performance indicate that LIO interarrival times and service times are indeed
exponentially distributed. As long as the execution of each business function can be expressed in terms of an
LIO count, you can translate the queueing model's output into terms of business function response time and
throughput. Forcing yourself to think of application functions in terms of LIO count is a Very Good Thing.

Page 4 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

9.4.3.3 A program to test for exponential distribution

All good queueing theory books inform their readers of the requirement that before you can use the M/M/m model,
you must ensure that the system you're modeling has exponential interarrival times and exponential service times. The
problem is that most of these books give you no practical means by which to ensure this. The Perl program shown in
Example 9-4 performs the task for you. The idea for the program was inspired by [Allen (1994) 224-225].
Implementation was guided principally by [Knuth (1981) 38-45], with supplemental assistance from Mathematica,
[Olkin et al. (1994)], [CRC (1991)], and http://www.cpan.org.

To use this program, download the source code to a system on which Perl is installed. On a Unix (Linux, HP-UX,
Solaris, AIX, etc.) system, you'll probably want to name the file mdist. On Microsoft Windows, you'll probably want
to call it mdist.pl. On Unix, you may have to edit the top line of the code to refer properly to your Perl executable
(e.g., maybe your Perl executable is called /usr/local/bin/perl). Then type perldoc mdist (or perldoc mdist.pl) to your
command prompt to view the manual page for the program.

Example 9-4. This Perl program tests the likelihood that a random variable is exponentially distributed

#!/usr/bin/perl

$Header: /home/cvs/cvm-book1/mdist/mdist.pl,v 1.7 2002/09/05 23:03:57 cvm
Cary Millsap (cary.millsap@hotsos.com)
Copyright (c) 2002 by Hotsos Enterprises, Ltd. All rights reserved.

use strict;
use warnings;

use Getopt::Long;
use Statistics::Distributions qw(chisqrdistr chisqrprob);

my $VERSION = do { my @r=(q$Revision: 1.12 $=~/\d+/g); sprintf "%d."."%02d"x$#r,@r };
my $DATE = do { my @d=(q$Date: 2003/11/07 23:13:06 $=~/\d{4}\D\d{2}\D\d{2}/g); sprintf
$d[0] };
my $PROGRAM = "Test for Fit to Exponential Distribution";

my %OPT;

sub x2($$) {
 my ($mu, $p) = @_;
 # The p that &Statistics::Distributions::chisqrdistr expects is the
 # complement of what we find in [Knuth (1981) 41], Mathematica, or
 # [CRC (1991) 515].
 return chisqrdistr($mu, 1-$p);
}

sub CDFx2($$) {
 my ($n, $x2) = @_;
 # The p that &Statistics::Distributions::chisqrprob returns is the
 # complement of what we find in [Knuth (1981) 41], Mathematica, or
 # [CRC (1991) 515].
 return 1 - chisqrprob($n, $x2);
}

sub mdist(%) {
 my %arg = (
 list => [], # list of values to test
 mean => undef, # expected mean of distribution
 quantiles => undef, # number of quantiles for test
 @_, # input args override defaults
);

 # Assign the list. If there aren't at least 50 observations in the
 # list, then the chi-square test is not valid [Olkin et al. (1994)
 # 613].
 my @list = @{$arg{list}};
 die "Not enough data (need at least 50 observations)\n" unless @list >= 50;

 # Compute number of quantiles and the number of expected observations
 # for each quantile. If there aren't at least 5 observations expected
 # in each quantile, then we have too many quantiles [Knuth (1981) 42]
 # and [Olkin et al. (1994) 613].

Page 5 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

 my $quantiles = $arg{quantiles} ? $arg{quantiles} : 4;
 my $m = @list/$quantiles; # we expect quantiles to have identical areas
 die "Too many quantiles (using $quantiles quantiles reqiures at least ". 5*$quantiles
." observations)\n" unless $m >= 5;

 # Assign the mean and chi-square degrees of freedom. If no mean was
 # passed in, then estimate it. But if we estimate the mean, then we
 # lose an additional chi-square degree of freedom.
 my $mean = $arg{mean};
 my $n_loss = 1; # lose one degree of freedom for guessing
quantiles
 if (!defined $mean) {
 my $s = 0; $s += $_ for @list; # sum the observed values
 $mean = $s/@list; # compute the sample mean
 $n_loss++; # lose additional d.o.f. for estimating the
mean
 }
 my $n = $quantiles - $n_loss; # chi-square degrees of freedom
 die "Not enough quantiles for $n_loss lost degrees of freedom (need at least ". ($n_
loss+1) ." quantiles)\n" unless $n >= 1;

 # Dump values computed thus far.
 if ($OPT{debug}>=1) {
 print "list = (", join(", ", @list), ")\n";
 printf "quantiles = %d\n", $quantiles;
 printf "mean = %s\n", $mean;
 }

 # Compute interior quantile boundaries. N.B.: The definition of
 # quantile boundaries is what makes this test for exponential
 # distribution different from a test for some other distribution. If
 # the input list is exponentially distributed, then we expect for
 # there to be $m observations in each quantile, with quantile
 # boundaries defined at -$mean*log(1-$i/$quantiles) for each
 # i=1..$quantiles-1.
 my @q; # list of interior quantile boundaries
 for (my $i=1; $i<=$quantiles-1; $i++) {
 $q[$i] = -$mean*log(1-$i/$quantiles);
 }

 # Compute frequency of observed values [Knuth (1981) 40]. Setting
 # $Y[0]=undef makes array content begin at $Y[1], which simplifies
 # array indexing throughout.
 my @Y = (undef, (0) x $quantiles);
 for my $e (@list) {
 print "e=$e\n" if $OPT{debug}>=3;
 for (my $i=1; $i<=$quantiles; $i++) {
 print " i=$i (before): q[$i]=$q[$i]\n" if $OPT{debug}>=3;
 if ($i = =$quantiles) { $Y[-1]++; print " Y[-1]->$Y[-1]\n" if $OPT{debug}>
=3; last }
 if ($e <= $q[$i]) { $Y[$i]++; print " Y[$i]->$Y[$i]\n" if $OPT{debug}>
=3; last }
 }
 }

 # Populate list containing frequency of expected values per quantile
 # [Knuth (1981) 40]. Using a data structure for this is unnecessarily
 # complicated for this test, but it might make the program easier to
 # adapt to tests for other distributions in other applications. (We
 # could have simply used $m anyplace we mention $np[$anything].)
 my @np = (undef, ($m) x $quantiles);

 # Dump data structure contents if debugging.
 if ($OPT{debug}>=1) {
 print "mean = $mean\n";
 print "q = (", join(", ", @q[1 .. $quantiles-1]), ")\n";
 print "Y = (", join(", ", @Y[1 .. $quantiles]), ")\n";
 print "np = (", join(", ", @np[1 .. $quantiles]), ")\n";
 }

 # Compute the chi-square statistic [Knuth (1981) 40].
 my $V = 0;
 $V += ($Y[$_] - $np[$_])**2 / $np[$_] for (1 .. $quantiles);

 # Compute verdict as a function of where V fits in the appropriate
 # degrees-of-freedom row of the chi-square statistical table. From

Page 6 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

 # [Knuth (1981) 43-44].
 my $verdict;
 my $p = CDFx2($n, $V);
 if ($p < 0.01) { $verdict = "Reject" }
 elsif ($p < 0.05) { $verdict = "Suspect" }
 elsif ($p < 0.10) { $verdict = "Almost suspect" }
 elsif ($p <= 0.90) { $verdict = "Accept" }
 elsif ($p <= 0.95) { $verdict = "Almost suspect" }
 elsif ($p <= 0.99) { $verdict = "Suspect" }
 else { $verdict = "Reject" }

 # Return a hash containing the verdict and key statistics.
 return (verdict=>$verdict, mean=>$mean, n=>$n, V=>$V, p=>$p);
}

%OPT = (# default values
 mean => undef,
 quantiles => undef,
 debug => 0,
 version => 0,
 help => 0,
);
GetOptions(
 "mean=f" => \$OPT{mean},
 "quantiles=i" => \$OPT{quantiles},
 "debug=i" => \$OPT{debug},
 "version" => \$OPT{version},
 "help" => \$OPT{help},
);
if ($OPT{version}) { print "$VERSION\n"; exit }
if ($OPT{help}) { print "Type 'perldoc $0' for help\n"; exit }
my $file = shift; $file = "&STDIN" if !defined $file;
open FILE, "<$file" or die "can't read '$file' ($!)";
my @list;
while (defined (my $line = <FILE>)) {
 next if $line =~ /^#/;
 next if $line =~ /^\s*$/;
 chomp $line;
 for ($line) {
 s/[^0-9.]/ /g;
 s/^\s*//g;
 s/\s*$//g;
 }
 push @list, split(/\s+/, $line);
}
close FILE;
print join(", ", @list), "\n" if $OPT{debug};

my %r = mdist(list=>[@list], mean=>$OPT{mean}, quantiles=>$OPT{quantiles});
print " Hypothesis: Data are exponentially distributed with mean $r{mean}\n";
printf "Test result: n=%d V=%.2f p=%.3f\n", $r{n}, $r{V}, $r{p};
print " Verdict: $r{verdict}\n";

_ _END_ _

=head1 NAME

mdist - test data for fit to exponential distribution with specified mean

=head1 SYNOPSIS

mdist [--mean=I<m>] [--quantiles=I<q>] [I<file>]

=head1 DESCRIPTION

B<mdist> tests whether a random variable appears to be exponentially
distributed with mean I<m>. This information is useful in determining, for
example, whether a given list of operationally collected interarrival
times or service times is suitable input for the M/M/m queueing theory
model.

B<mdist> reads I<file> for a list of observed values. If no input file is
specified, then B<mdist> takes its input from STDIN. The input must
contain at least 50 observations.

The program prints the test hypothesis, the test results, and a verdict:

Page 7 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

 $ perl mdist.pl 001.d
 Hypothesis: Data are exponentially distributed with mean 0.000959673232
 Test result: n=2 V=0.72 p=0.302
 Verdict: Accept

The test result statistics [Knuth (1981) 39-45] include:

=over 4

=item I<n>

Degrees of freedom from the chi-square test.

=item I<V>

The "chi-square" statistic.

=item I<p>

The probability at which I<V> is expected to occur in a chi-square
distribution with degrees of freedom equal to I<n>.

=back

B<mdist> uses a I<q>-quantile chi-square test for exponential
distribution, adapted from [Allen (1994) 224-225] and [Knuth (1981)
39-40]. Allen provides the strategy for divvying the data into quantiles
and testing whether the frequency in each quantile matches our expectation
of the exponential distribution. Knuth provides the general chi-square
testing strategy that produces a verdict of "Accept", "Almost suspect",
"Suspect", or "Reject".

=head2 Options

=over 4

=item B<--mean=>I<m>

The hypothesized expected value of the random variable (i.e., the
hypothesized mean of the exponential distribution). If no I<m> is
specified, then B<mdist> will use the sample mean of the input and
adjust the chi-square degrees of freedom parameter appropriately.

=item B<--quantiles=>I<q>

The number of quantiles to use in the chi-square test for goodness-of-fit.
The number of quantiles must equal at least 2 if a mean is specified, and
3 if the mean will be estimated. The number of quantiles must be small
enough that the number of observations divided by I<q> must be at least 5.
The default is I<q>=4.

=back

=head1 AUTHOR

Cary Millsap (cary.millsap@hotsos.com)

=head1 BUGS

Instead of estimating the distribution mean by computing the sample mean,
we should probalby use the minimum chi-squared estimation technique
described in [Olkin et al. (1994) 617-623].

=head1 SEE ALSO

Allen, A. O. 1994. Computer Performance Analysis with Mathematica. Boston
MA: AP Professional

CRC 1991. Standard Mathematical Tables and Formulae, 29ed. Boca Raton FL:
CRC Press

Knuth, D. E. 1981. The Art of Computer Programming, Vol 2: Seminumerical
Algorithms. Reading MA: Addison Wesley

Olkin, I.; Gleser, L. J.; Derman, C. 1994. Probability Models and

Page 8 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Applications, 2ed. New York NY: Macmillan

Wolfram, S. 1999. Mathematica. Champaign IL: Wolfram

=head1 COPYRIGHT

Copyright (c) 2002 by Hotsos Enterprises, Ltd. All rights reserved.

9.4.4 Behavior of M/M/m Systems

The beauty of M/M/m is that using the model makes it possible to experiment with parameters that would be very
expensive to manipulate in the real world. In this section, we'll examine a few interesting behaviors of M/M/m. These
model behaviors will help explain how to avoid some of the undesirable performance behaviors that plague real multi-
channel queueing systems. The result will be a clearer understanding of the Oracle system you're probably thinking
about right now.

9.4.4.1 Multi-channel scalability

Of course, two CPUs are better than one. But why? And under what circumstances? An easy way to conceptualize the
answer is to use a sequence diagram. Figure 9-12 reveals the answer. On the system shown in case a, the first disk I/O
call cannot return immediately to the single CPU because that CPU is occupied doing other work. Thus, the CPU
request queues, which of course increases response time. The system shown in case b has two CPUs. When the disk
I/O call returns, it finds CPU1 busy, but CPU2 is ready and able to service the request, which results in the elimination

of a queueing delay, which improves response time for the business function. Note the interesting effect of creating a
new bottleneck on the disk in case b.

Figure 9-12. More service channels (in this drawing, CPUs) improve response times on busy systems by
reducing queueing delays

This phenomenon of reduced queueing in systems with larger m manifests itself clearly in the output of M/M/m.
Figure 9-13 shows the performance effect of increasing the number of parallel service channels. Although the service
time (S) remains constant across all the systems represented by the figure, response times (R) are smaller at higher
arrival rates (λ) on systems with more service channels (m), because there is less queueing delay (W = R - S).

Figure 9-13. Increasing the number of parallel service channels provides greater capacity to arrivals requesting
service, which reduces response time at higher arrival rates

Page 9 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

So, which is better, a system with a single very fast CPU? Or a system with m > 1 slower CPUs? Most consultants
have the correct answer programmed into their RNA: "It depends." But with M/M/m you have the tools to answer the
very good question, "On what?"

Figure 9-14 shows very clearly that the "it depends" depends only upon one variable: the arrival rate. For low arrival
rates, an m = 1 system with the fast CPU will provide superior performance. For high arrival rates, the m > 1 system
will be faster. You can estimate the break-even point λeq by inspection if you plot the response time curves in a tool

like you can find at http://www.hotsos.com. If you want a more detailed answer, you could find the λ value for which
the two systems' response times are equal by using the interval bisection method shown earlier in the LambdaMax
function of Example 9-2. Or you can compute λeq symbolically with a tool like Mathematica.

Figure 9-14. A computer with a single fast CPU produces better response times for low arrival rates, but a
computer with four slower CPUs produces better response times for high arrival rates

People who have tried both types of system notice the behavior depicted in Figure 9-14 in very practical terms:

� A long nightly batch job runs faster on the system with the single fast CPU. This result often surprises people
who "upgrade" from the single-CPU system to the multi-CPU system. But when a single-threaded job runs
solo on a system, the arrival rate is low. It will run the fastest on a fast CPU. The multi-CPU system doesn't
provide reduction in queueing delay on a system with a low arrival rate, because on such a system there is no
queueing to begin with.

� The multi-CPU system provides better response times to online users during their busiest work hours. This

Page 10 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

result is due to the reduction in queueing that a multi-channel system provides. Multi-CPU systems scale
better to high arrival rates (such as those induced by high concurrent user counts) than single-CPU systems.

Naturally, the better system to purchase depends upon an array of both technical and non-technical factors, including
price, hardware reliability, dealer service, upgrade flexibility, and compatibility with other systems. But the expected
peak arrival rate of workload into your system, which is profoundly influenced by your system's concurrency level,
should definitely factor into your decision.

9.4.4.2 The knee

The most interesting part of the performance curve is its "knee." Intuitively, the location of the "knee in the curve" is
the utilization value at which the curve appears to starting going up faster than it goes out. Unfortunately, this intuitive
definition doesn't work, because the apparent location of the knee changes, depending on how you draw the curve.
Figure 9-15 illustrates the problem. The graphs shown here are two different plots of the same response time curve.
The only difference between the two plots is the scale of the vertical axis. The visual evidence presented here is
overwhelming: clearly "these two systems have different knees." But remember, they are not two systems, they are
plots of the same system using different vertical scales.

Figure 9-15. Two views of the exact same graph plotted using two different vertical scales. Intuitively, it

appears that the knee in the top curve occurs at ρρρρ 0.8 and that the knee in the bottom curve occurs to the
right of ρρρρ = 0.9

Page 11 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

To visually seek the utilization at which the "greatest bend occurs" is thus an unreliable method for locating the knee.
Obviously, a useful definition of a system's "knee" cannot rely upon an arbitrary selection of which drawing unit an
artist chooses for a plot of the system's response time curve.

A more suitable technical definition for the "knee" is this: the knee of the response time curve occurs at the utilization
value ρ* (rho-star) at which the ratio R/ρ achieves its minimum value. Graphically, the location of the knee is the
utilization (ρ) value at which a straight line drawn through the origin touches the response time curve in exactly one
point, as shown in Figure 9-16. Many analysts consider the value ρ* the optimal utilization for an M/M/m system,
because...

...it is usually desirable to simultaneously minimize R (to satisfy users) and maximize ρ (to share
resource cost among many users) [Vernon(2001)].

As we have seen, for utilization values to the left of the knee (for ρ < ρ*), we waste system capacity. After all, if we're
running at low utilization, we can add workload without appreciably degrading response times. For utilization values
to the right of the knee (for ρ > ρ*), we risk inflicting serious response time degradation upon our users even for tiny
fluctuations in workload.

Figure 9-16. The knee is the utilization value ρρρρ* at which R/ρρρρ achieves its minimum value. Equivalently, the
knee is the ρρρρ value at which a line through the origin is tangent to the response time curve

The location of the knee in an M/M/m system is a function solely of m, the number of parallel service channels. As
we've seen, adding parallel service channels will allow a system to run at higher utilization values without appreciable
response time degradation. Figure 9-17 shows how the location of the knee moves rightward in the utilization domain
as we increase the value of m.

One author gets this point terribly wrong in his paper Performance Management: Myths
& Facts [Millsap (1999) 8]. The points he was trying to make are indeed relevant—there
in fact is a knee in the response time curve, and in fact the knee does move rightward as
you add service channels.

However, the author's definition of knee (the ρ value "at which the curve begins to go `up'
faster than it goes `out') is unfortunately the intuitive one that is debunked above. And the
manner in which he suggested that the knee might be found (calculating the value of ρ for

which R/ ρ = 1, and so on) is just completely wrong. I'm sure that the author would be
very sorry if he knew.

Page 12 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Figure 9-17. The knee value moves rightward in the utilization domain (ρρρρ) as the number of parallel service
channels (m) increases

The location of the knee for a given value of m is constant, regardless of service rate. This phenomenon is
demonstrated in Figure 9-18. In this figure, changes to the service rate (µ) motivate changes to response times (note
the differing labels on the R axis), but the shape of the performance curve and location of the knee are the same for all
M/M/1 systems. Similarly, all M/M/2 curves share a single shape and a single knee value. All M/M/3 curves share a
single shape and a single knee value, and so on.

Figure 9-18. The location of the knee is constant for a given m, regardless of the value of m. Under conditions

of service rate changes, the vertical position of the curve moves, but neither the curve's shape nor its knee
location changes

Because all M/M/m systems with a fixed value of m have an identical knee utilization, it is possible to create a table
that lists the location of the knee for interesting values of m. Table 9-3 shows the location of the knee for various
M/M/m systems.

Two curves f1 and f2 can be said to have the same shape if f1(x) = k f2(x) at every x for

some constant k. That is, two curves have the same shape if they can be made to look
identical by scaling one curve's vertical axis by a constant.

Page 13 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Table 9-4 gives further insight into the performance of M/M/m systems. It illustrates how average response time
degrades relative to utilization on various M/M/m systems. For example, if the average response time on an unloaded
M/M/1 system is R = S seconds, then the average response time will degrade to R = 2S seconds (twice the unloaded
response time) when utilization reaches 50%. Response time will degrade to four times the unloaded response time
when utilization reaches 75%, and to ten times the unloaded response time when utilization reaches 90%. On an
M/M/8 system, response time will degrade to R = 4S seconds only when system utilization reaches 96.3169%. These
figures match the intuition acquired by studying the effects of adding service channels upon response time scalability.

9.4.4.3 Response time fluctuations

Online system users who execute the same task over and over are very sensitive to fluctuations in response time.
Given a choice, most users would probably prefer a consistent two-second response time for an online form over
response time that averages two seconds per form but does so by providing sub-second response for 75% of

Table 9-3. The utilization value ρρρρ* at which the knee occurs in an M/M/m system depends upon the value of
m

m ρρρρ* m ρρρρ*

1 0.5 32 0.86169

2 0.57735 40 0.875284

3 0.628831 48 0.885473

4 0.665006 56 0.893482

5 0.692095 64 0.899995

6 0.713351 80 0.910052

7 0.730612 96 0.917553

8 0.744997 112 0.923427

16 0.810695 128 0.928191

24 0.842207

Table 9-4. The utilization on M/M/m systems at which response time becomes k times worse than the service
time (that is, at which R = kS)

k m

 1 2 4 8 16

1 0. 0. 0. 0. 0.

2 0.5 0.707107 0.834855 0.909166 0.950986

3 0.666667 0.816497 0.901222 0.947673 0.97263

4 0.75 0.866025 0.929336 0.963169 0.980984

5 0.8 0.894427 0.944954 0.971569 0.985426

6 0.833333 0.912871 0.954907 0.976844 0.988184

7 0.857143 0.92582 0.961807 0.980467 0.990064

8 0.875 0.935414 0.966874 0.983109 0.991427

9 0.888889 0.942809 0.970753 0.985121 0.992462

10 0.9 0.948683 0.973818 0.986704 0.993273

Page 14 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

executions and seven-second response time for 25% of executions. You have perhaps noticed that on low-load
systems, response times are mostly stable, but on very busy systems, response times can fluctuate wildly. The
queueing model explains why.

Figure 9-19 depicts the very small degradation in response time (from R1 to R2) of a multi-channel (i.e., m > 1) system

as its utilization increases from ρ1 to ρ2. Notice how the R1 and R2 values are so close together that their labels

overlap. However, to right of the knee, even a very tiny change in utilization from ρ3 to ρ4 produces a profound

degradation in response time (from R3 to R4).

Figure 9-19. Left of the knee, response time is insensitive even to large fluctuations in utilization, but right of
the knee, even tiny fluctuations in utilization create huge response time variances

As we learned in the previous section, multi-channel systems can provide stable response times for higher arrival rates
than single-channel systems can handle. The excellent scalability shown in Figure 9-19 is another illustration of this
phenomenon. However, the capacity of even the largest multi-channel system is finite, and when the arrival rate
begins to encroach upon that finite limit of capacity, performance degrades quickly.

By contrast, performance of single-channel systems degrades more smoothly, as shown in Figure 9-20. In this picture,
response time clearly degrades faster to the right of the knee. However, in systems with few parallel service channels
(i.e., with small m), the degradation is distributed more uniformly throughout the entire range of utilization values
than it is for systems with many parallel service channels (i.e., with large m).

Figure 9-20. Response time degrades more uniformly throughout the domain of utilization values on single-
channel (and small-m) systems

Page 15 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

A single-channel queueing system is less scalable than a similarly loaded queueing system with multiple service
channels. That is, its knee is nearer to the low end of the utilization domain. But every system has a knee. Especially
on highly scalable multi-channel systems, once you drive workload past the knee, the system's users are in for a wild
ride of fluctuating response times.

9.4.4.4 Parameter sensitivity

Spreadsheet-based systems like Microsoft Excel allow you to test what-if situations at a pace that Agner Erlang would
have envied. Such what-if tests can save countless iterations through emotional roller coaster rides with end users. For
example, on very many occasions in my career, customers have engaged my services to determine why a performance

Bad CPU Utilization Targets

I am reluctant to express a "good CPU utilization target" because CPU utilization is a side-effect of the
metric to which you really should be targeting: response time. However, avoiding some bad utilization
values can help keep you out of system performance trouble.

� On batch-only application systems, CPU utilization of less than 100% is bad if there's work
waiting in the job queue. The goal of a batch-only system user is maximized throughput. If there's
work waiting, then every second of CPU capacity left idle is a second of CPU capacity gone
wasted that can never be reclaimed. But be careful: pegging CPU utilization at 100% over long
periods often causes OS scheduler thrashing, which can reduce throughput.

� On interactive-only application systems, CPU utilization that stays to the right of the knee over
long periods is bad. The goal of an interactive-only system user is minimized response time.
When CPU utilization exceeds the knee in the response time curve, response time fluctuations
become unbearable. By leaving idle capacity on the system, the system manager effectively
purchases better response time stability.

� On systems with a mixture of batch and interactive workload, your job is much more difficult,
because your users' performance goals are contradictory. On mixed-workload systems, it is
important for you to prioritize your workloads. If interactive response time is more important,
then you'll want to ensure that you don't drive CPU utilization too far to the right of the knee. If
batch throughput is more important, then you'll not want to waste as much CPU capacity to
provide response time stability to your less important users.

I discuss a method for determining the optimal mixture of batch and interactive workload in [Millsap
(2000b)].

Page 16 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

improvement project has failed. Application of the M/M/m queueing model in several of these occasions has enabled
me to explain quickly and concisely why some hardware upgrade didn't produce the desired overall performance
improvement. The queueing model has often led to proofs of assertions in forms like:

...This is why upgrading to 100% faster CPUs did not produce the desired performance improvement.
Furthermore, even if you could have quadrupled the number of these faster CPUs, you still would not
have achieved the desired performance improvement. The only way to produce the desired
performance improvement is either to reduce the number of times you use this function, or to reduce
the length of the code path that is executed when you use it.

In cases like this, earlier use of the queueing model might have averted the catastrophe that had motivated my
presence.

Using the M/M/m queueing model in a spreadsheet teaches you that every input parameter and every output parameter
of the model is negotiable. The key to optimizing the performance of a system is to understand how the parameters
relate to each other, and to understand the economic impact of the choices you can make about each parameter. Each
of the following items describes a negotiable parameter and some of the choices you can make about it:

λ

The arrival rate λ is a negotiable parameter that can provide significant leverage to the performance analyst.
Many analysts fail even to consider negotiating workload with end users; they assume that the amount of work
that the business needs from the system is fixed. But in many cases, a principal cause of system performance
trauma is unnecessary workload. Examples include:

� An application sends scheduled alerts via email to each user every two minutes, but each end user
reads alerts only twice a day. Thus, the arrival rate for alerts could be reduced by a factor of 120, from
30 alerts per hour to 0.25 alerts per hour.

� A system with eight CPUs becomes extremely slow for its online users from 2:00 p.m. to 3:00 p.m. A
prominent workload element during this time period is a set of 16 reports (batch jobs), each of which
consumes about 30 minutes of CPU time. The reports will not be read until 8:00 a.m. the next day.
Thus, scheduling the 16 batch jobs to run at midnight instead of online business hours would reduce
the arrival rate of CPU service requests by enough to conserve about eight CPU-hours of capacity
during the 2:00 p.m. to 3:00 p.m. window.

� Accountants generate 14 aged trial balance reports each day to determine whether debits properly
match credits in a set of books. Each 200-page report requires the execution of 72,000,000 Oracle
logical read calls (LIOs), which consume about 30 minutes of CPU time. However, unbeknownst to
the users, the application provides a web page that can tell them everything they need to know about
out-of-balance accounts with fewer than 100 LIOs. Thus, the arrival rate of LIOs for this business
requirement can be reduced from about one billion per day to about 1,400.

What is the fastest way to do something? Find a way to not do it at all. Many times, you can accomplish this
goal with no functional compromise to the business.

rmax

It is possible that users will agree to compromise on their tolerance for spikes in response time, especially if a
small compromise in response time tolerance might save their company a lot of money. However, users will
quickly tire of attempts to convince them that they should be more tolerant of poor system performance.
Unless it is absolutely necessary to find more breathing room, negotiating rmax is one of the last places you

should seek relief.

Page 17 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

p

As with negotiations about rmax, users are likely to find negotiations about p, the proportion of response times

that must not exceed rmax, to be counterproductive and frustrating.

q

Although the number q of M/M/m queueing systems is technically a negotiable parameter, scaling an Oracle
application system across more than one database server is, even with Oracle9i Real Application Clusters
(RAC), still a technologically challenging endeavor that is almost certain to cost more than a configuration in
which the database runs on only a single host.

m

The number m of parallel service channels in a system is negotiable, subject to physical constraints and
scalability constraints that are imposed chiefly by the operating system. For example, a given system may
require that CPUs be installed in multiples of two, up to 32 CPUs, but a 32-CPU system may be only as
powerful as a theoretical system with 24 perfectly scalable CPUs. Benchmarks and discussions with vendor
scientists can reveal these types of data.

µ

The service rate µ is a negotiable parameter that provides immense leverage to the performance analyst. Many
analysts' first impulse for optimizing a system is to improve (increase) µ by providing faster hardware. For
example, upgrading to 20% faster CPUs should produce a CPU service rate increase on the order of 20%,
which can be enormously beneficial for CPU constrained applications.

However, what many analysts overlook is the even more important idea that service rate can be improved by
reducing the amount of code path required to perform a given business function. In Oracle application
systems, performance analysts can often achieve spectacular code path reduction by engaging in the task of
SQL optimization. SQL optimization consists of manipulating some combination of schema definitions,
database or instance statistics, configuration parameters, query optimizer behavior, or application source code
to produce equivalent output with fewer instructions on the database server.

Code path reduction has several advantages over capacity upgrades, including:

Cost

Capacity upgrades frequently motivate not only the procurement cost of the upgraded components, but
also increased maintenance costs and software license fees. For example, some software licenses cost
more for systems with n + 1 CPUs than they do for systems with n CPUs. Code path reduction for
inefficient SQL statements generally requires no more than a few hours of labor per SQL statement.

Impact

Code path reduction often provides far greater leverage to the performance analyst than capacity
upgrades. For example, it may be possible to double CPU speeds only once every two years. It is
frequently possible to reduce code path length by factors of 105 or more with just a few hours of labor.

Page 18 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Risk

Code path reduction carries very little risk of unintended negative side effects that sometimes
accompany a capacity upgrade. One possible side effect of a capacity upgrade is performance
degradation of programs that were bottlenecked on a device other than one to which the upgrade was
applied [Millsap (1999)].

Working even briefly with a queueing model reveals why eliminating unnecessary workload creates such spectacular
system-wide performance leverage. The two ways to eliminate work are to eliminate business functions that do not
legitimately add value to the business, and to eliminate unnecessary code path. These "two" endeavors are really a
single waste-elimination task executed at different layers in the technology stack.

9.4.5 Using M/M/m: Worked Example

A worked example provides a good setting for exploring how to use the model and interpret its results. I encourage
you to step through the problem that follows while using the M/M/m queueing theory model (a Microsoft Excel
workbook) that is available at http://www.hotsos.com. The problem is a conceptually simple one, but its solution
requires an understanding of queueing theory.

Here is the problem statement:

An important SQL statement consumes 0.49 seconds of CPU service time to execute. We anticipate
that each of 100 users will execute this statement at a rate of four times per minute during the system's
peak load. The Linux server is equipped with boards that allow installation of up to 16 CPUs. How
many CPUs will be required on this Linux server if our goal is to provide sub-second CPU response
times in at least 95% of users' executions during peak load?

Let's go.

9.4.5.1 Suitability for modeling with M/M/m

The first thing you need to do is check whether the system under analysis is suitable for modeling with the M/M/m/
/FCFS (or M/M/m for short) queueing model:

M /M/m/ /FCFS (exponential interarrival time)

If request interarrival times (the duration between arrivals) are operationally measurable, then your first step is
to test whether the interarrival times are exponential by using the program shown in Example 9-4. If your
interarrival times are not exponential, then consider modeling a smaller time window. For example, in Case I
of the restaurant example I described earlier (reproduced here as Table 9-5), interarrival times are clearly not
exponential when regarded over the observation period from 11:30 a.m. to 1:30 p.m. However, interarrival
times are much more likely to be exponential over the period from 12:00 noon to 12:15 p.m.

Table 9-5. Two very different scenarios both lead to an expected interarrival time of ττττ = 30 seconds

 Number of arrivals

Time interval Case I Case II

11:30 a.m. to 11:45 a.m. 0 34

11:45 a.m. to 12:00 noon 0 28

12:00 noon to 12:15 p.m. 240 31

12:15 p.m. to 12:30 p.m. 0 37

12:30 p.m. to 12:45 p.m. 0 24

Page 19 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

If request interarrival times are not operationally measurable (for example, because the system has not yet been
designed), then you have to use your imagination. It is almost always possible to construct a time window in which
you can confidently assume that interarrival times will be exponential (or, equivalently, that the rate of arrivals will be
Poisson). Let's assume for this example that the arrivals can be confirmed operationally as being Poisson.

M/M /m/ /FCFS (exponential service time)

Similarly, you must ensue that service times are exponentially distributed, using the program shown in Example 9
or by some other means. If your service times are not exponentially distributed, then consider redefining your service
unit of measure. For example, if you define your service unit of measure as a report, but your reports range in service
duration from 0.2 seconds to 1,392.7 seconds, the report service times are probably not exponential. Change your
service unit of measure to a particular type of report whose service times have less fluctuation. Or reduce your unit of
measure to a more "sub-atomic" level, by choosing a unit of measure like the Oracle LIO.

In this example, let's assume that we have confirmed by using operational measurements upon a test system that the
"important SQL statement" produces service times that are exponentially distributed.

M/M/m/ /FCFS (m homogeneous, parallel, independent service channels)

The problem statement specifies that our service channel of interest is the CPU on a computer running the Linux
operating system. Because Linux is a fully symmetric multiprocessing (SMP) operating system, then we know our
service channels to be homogenous, parallel, and independent. Some operating system configurations, such as those
that use processor affinity, violate the CPU homogeneity constraint. As you shall soon see, we will also have to
account for scalability imperfections when we use the model. We will end up using an M/M/m model to forecast the
performance of a system with more than m CPUs.

M/M/m/ /FCFS (no queue length restriction)

A Linux CPU run queue has no relevant depth constraints, so we're clear for takeoff on the " attribute of the
M/M/m definition.

M/M/m/ /FCFS (first-come, first-served queue discipline)

The standard Linux process scheduling policy is approximately first-come, first-served. Even though the scheduling
algorithm permits process prioritization and selection from different policies (FCFS and round-robin), the M/M/
model has proven suitable for predicting performance of Linux systems.

9.4.5.2 Computing the required number of CPUs

The problem statement specifies that our job is to determine the number of CPUs required to meet a particular performance
goal. We can set up the problem in the input cells of the Excel M/M/m workbook as shown in Table 9-6. You will enter the
values from the Value column into the yellow cells of the Multiserver Model worksheet of the MMm.xls workbook.

12:45 p.m. to 1:00 p.m. 0 30

1:00 p.m. to 1:15 p.m. 0 32

1:15 p.m. to 1:30 p.m. 0 24

Average per 0:15 bucket 30 30

Table 9-6. Queueing model input parameters

Page 20 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Once we load these values into the workbook, we see that a configuration with only one CPU (m = 1) will definitely
not handle the required workload (Figure 9-21).

Figure 9-21. A one-CPU system will produce sub-second response times in zero percent of cases on a system
with λλλλ = 6.667 stmt/sec and µµµµ = 2.041 stmt/sec. Note that the high arrival rate and comparatively low service

rate would drive CPU utilization to 326.7%, a value that is possible only in theory

Name Valuea Explanation

jobunit stmt The focal unit of work specified in the problem statement is "an important SQL statement."

timeunit sec
Both the response time tolerance and the SQL statement's CPU service time are expressed
in seconds.

queueunit system
The problem specifies that we are searching for the number of CPUs that we will need to
install in a single system.

serverunit CPU The server unit in the problem statement is the CPU.

λ =100*4/60
"We anticipate that each of 100 users will execute this statement at a rate of four times per
minute during the system's peak load."

rmax
 1

The goal is to provide response times less than 1.0 second ("...provide sub-second CPU
response times").

q 1 The problem statement specifies that we are to assess a single system.

m 1
The number of CPUs per system is the value that we are seeking. We can enter the value 1
into this cell, because we shall seek shortly for a suitable value.

µ =1/0.49
"An important SQL statement consumes 0.49 seconds of CPU service time to execute."
Therefore, the service rate is 1/0.49 statements per second.

Page 21 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The model predicts that if we equip our system with only one CPU, then keeping up with the 6.67 statements per
second coming into the system would require an average CPU utilization of 326.7%. It is of course impossible to run
CPU utilization to more than 100%. In reality, such a system would sit at 100% utilization forever. Arrivals would
enter the system faster than it can process them, causing the system's queue length to grow continuously and without
bound. However, this statistic does give us a clue that we would need to configure our system with at least four CPUs
just to provide any chance of the system's keeping up with its workload.

The MMm workbook conveniently provides two columns (valuea and valueb) that enable us to see the behavior of two

systems side-by-side. If you try the model using m = 4, you'll see the results shown in Figure 9-22.

Figure 9-22. Using four perfectly scalable CPUs would cause the system to meet the performance target in
64.9% of cases

Page 22 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

An ideal four-CPU system would produce an average response time of 0.908787 sec/stmt. However, we're still in
trouble, because this configuration will provide sub-second response time in only 64.922% of executions of the
statement. The original specification required sub-second response time in 95% of executions during peak load.

Let's see the theoretical best performance that could happen with the number of CPUs in the machine set to the
maximum of m = 16, as shown in Figure 9-23. It turns out that this project is in big, big trouble. Even with the number
of CPUs set to m = 16, it is impossible to create user satisfaction with a sub-second response time expectation in more
than about 87% executions of the statement. You can try the model yourself: even if we could crank up the
configuration to m = 1000, this system still wouldn't be able to provide satisfactory performance in more than about
87% of executions.

Figure 9-23. Even with sixteen perfectly scalable CPUs, this system can meet the performance target in only
87% of cases

Page 23 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

9.4.5.3 What we can learn from an optimistic model

Note that the M/M/m model will allow you to hypothesize the existence of systems that cannot exist in reality. You
could, for example, model a perfectly scalable 1,000-CPU Linux system, or even a perfectly scalable 4-CPU
Microsoft Windows NT system. No matter how preposterous the input values you enter, the queueing model will
faithfully report to you how a perfectly scalable hypothetical system of this configuration would perform. In fact, the
model doesn't actually even know whether you are modeling computer systems, grocery stores, or toll booths. It is up
to you to decide whether the system you're hypothesizing is feasible to construct. The M/M/m queueing theory model,
used like we have described here, is optimistic because it omits any understanding of real-life barriers to scalability
other than the effects of queueing.

The upshot of this understanding is significant. If this queueing theory model tells you that something can be done,
then it's possible that you still might not be able to do that thing. You can, after all, tell the model that you can cram
1,000 CPUs into a Linux box, and that all this capacity will operate full-strength, no problem. However, if this
queueing theory model tells you that something cannot be done, you can take that advice all the way to the bank. If an
optimistic model advises you that something is impossible, then it is impossible.

The M/M/m model implemented in my Excel workbook is optimistic because it omits any
understanding of real-life barrier to scalability other than the effects of queueing.
Consequently, for the model to advise you that something can be done does not constitute
a proof that your project will succeed. However, for the model to advise you that
something cannot be done is sufficient evidence that you cannot do it, as long as your
input assumptions are valid.

Page 24 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Our model has told us that no matter how many CPUs we might add to our hypothetical configuration, we will never
be able to meet the performance criterion that 95% of statement executions must finish in sub-second time. This might
sound like bad news for the project, but it's immensely better to find out such an unpleasant truth using an inexpensive
queueing model than to watch a project fail in spite of vast investments in attempt to make it succeed.

9.4.5.4 Negotiating the negotiable parameters

So, confronted with news that our project is doomed, what can we do? One more hidden beauty of queueing theory is
that it reveals exactly which system manipulations (modeled as M/M/m parameter changes) might make a positive
performance impact. I listed the negotiable parameters for you earlier in Section 9.4.4.4. An analysis of those
negotiable parameters for this example should include:

Number of systems q, and number of CPUs per system m

First, we can investigate a curious output of the model to understand why adding CPUs doesn't seem to
increase the response time CDF beyond about 87%. The model shows that even a hundred systems with a
hundred CPUs each will not produce satisfactory response times for the statement more than about 87% of the
time.

The reason is that the service time in an M/M/m model is a random variable. Although the average service
time is a constant, actual service times for a given type of function fluctuate from one function to the next. For
example, two identical SQL queries with differing bind values in a where clause predicate might motivate
slightly different LIO counts, which will motivate different CPU service times. By increasing the number of
CPUs on a system, we reduce only the average queueing delay (W) component of response time (R = S + W).
If the average service time alone is sufficiently near the response time tolerance, then random fluctuations in
service times will be enough to cause response time to exceed the specified tolerance for a potentially
significant proportion of total executions.

There is virtually no benefit to be gained by using more than about six CPUs for this problem's important SQL
statement.

Average arrival rate λ

Does the business really need 100 users each running the important statement four times a minute? It is a
legitimate question. In many situations, the best system optimization step to perform first is to realize that the
users are asking the machine to do more work than the users could even use. For example, polling a
manufacturing process and generating a user alert up to four times a minute is senseless if the user is getting
his job done perfectly well by reviewing alerts only once an hour.

If the average arrival rate at peak load in our problem could be reduced similarly, from:

statements per second to:

statements per second, it would reduce the workload generated by this statement by a factor of 240. The result
would be a significant scalability benefit. The system would require only one CPU to produce satisfactory
response times for 87% of the statement's executions.

Because the arrival rate λ = A/T is a ratio, there are two ways that you can reduce its value. One way is to
reduce the numerator A, the number of arrivals into the system, as I've suggested already. Another way is to

Page 25 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

increase the denominator T, the time period in which the system is required to absorb the specified number of
arrivals.

Reducing the average arrival rate can enable us to use a less expensive system, but we would still have some
work to do. None of the changes described so far will increase the proportion of satisfactory experiences with
the important statement to 95%.

Response time tolerance rmax, and success percentile p

Does the business really need for the important statement to deliver response times less than one second? Does
the success percentile really need to be 95%? Beware asking these questions out loud, because these particular
inquiries breed suspicion. Users often consider these questions to be non-negotiable, but it is important to
understand that making these questions non-negotiable imposes some cost constraints upon your system that
your business might consider non-negotiable. For example, enduring 100 additional seconds of response time
delay per day to save $100,000 per year is probably a good trade-off. If the business in this problem can afford
to relax its 95th percentile response time tolerance to rmax = 1.5 seconds, then you could deliver the required

performance for the originally stated arrival rate (λ 6.666667 stmt/sec) with six CPUs. If we could also

negotiate the arrival rate reduction mentioned previously, to λ 0.027778 statements per second, then you
would need only one CPU.

Average service rate µ

Here is where you can achieve the most extraordinary possible performance leverage without requiring the
users to compromise their functional or performance constraints. You've probably heard that SQL tuning
offers high payoffs, but it would be nice to know how high before you embark upon a SQL tuning expedition.
The model can tell you the answer.

If you could, for example, improve the service time of the important statement from 0.49 seconds to 0.3125
seconds, you would improve the service rate for the statement from µ = 2.04 stmt/sec to µ = 3.2 stmt/sec. If
you could improve your service rate just this much, then you could meet the original rmax = 1.0 requirement in

95% of statement executions, with just four CPUs. If you could improve average service rate to µ = 10
statements per second (for example, by optimizing SQL to reduce average service time to 0.1 seconds), then
you could meet the original performance requirements with just one CPU.

I believe that the greatest value of the M/M/m queueing model is that it stimulates you to ask the right questions. In
this example, you've learned that it is futile to even think about using more than six CPUs' worth of capacity to run the
important statement. You have learned that by negotiating a more liberal rmax value with your users, you can gain a

little bit of headspace. But until you can reduce either the rate at which people run the important statement (λ), or
reduce the service time of the statement (S = 1/µ), you're going to be stuck with a system that at best barely meets its
performance target.

9.4.5.5 Using Goal Seek in Microsoft Excel

Microsoft Excel provides a Goal Seek tool that makes it simple to answer many of the questions we've discussed in
this section. It allows you to treat any model output value as an input parameters. For example, assume that you want
to determine what average service rate would be required to drive response time satisfactions into the 95th percentile
for a fixed value of m.

You can set up the problem this way. First, enter an arbitrary constant value for µ. In Figure 9-24, I have entered the
value 1. Next, select the Tools Goal Seek menu option to activate the goal seek dialog, as shown in Figure 9-25.
The goal is to set CDF(rmax) to the value 95% by changing µ. After accepting the result of the goal seek operation,

Figure 9-26 shows that using the value µ 10 produces the desired result.

Page 26 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Figure 9-24. To find what µµµµ value we need to drive CDF(rmax) 95%, we first enter an arbitrary constant

value for µµµµ

Figure 9-25. Our goal is to set CDF(rmax) to the value 95% by changing µµµµ

Figure 9-26. After accepting the goal seek solution, our worksheet shows that the value µµµµ 10 produces the
desired CDF(rmax) value

Page 27 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

9.4.5.6 Sensitivity analysis

The quality of your response time predictions will vary in proportion to the quality of the feedback loop that you use
to refine your forecasts. Lots of people get the key numbers right when I present them with a queueing model and ask
them to solve a carefully prepared story problem. But you need to resist the temptation to stop thinking, which begins
when your model "produces the answer." When the answer comes out, you need to devote a bit more time to the very
important task of sensitivity analysis that 99% of people trying models for the first time will habitually fail to do. The
remainder of this section illustrates some key points of error analysis for my continuing example.

In addition to the model's output, you must consider several other factors:

Physical constraints

Of course, it is not possible to install part of a CPU. The number of CPUs you install in a system must be a
whole number. Some systems may require a whole number of pairs of CPUs. Physical constraints of course
also restrict the maximum number of CPUs that can be installed in a system.

Scalability imperfections

The queueing model knows nothing about scalability imperfections that might prevent a system with m CPUs
from delivering the full m CPUs' worth of processing capacity. For example, to get six full CPUs' worth of
processing from a Linux server, we might need to install eight or more CPUs. Using the Microsoft Windows
NT operating system, it might be impossible to configure a system that provides more than two full CPUs'

Page 28 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

worth of processing capacity, no matter how many CPUs the chassis might accept. It is up to the performance
analyst to determine the impact of scalability imperfections that prevent a real m-CPU system from actually
delivering m CPU's worth of system capacity.

Other workload

Although the problem statement mentioned only a single SQL statement, the system will almost certainly
require the execution of several other workload components. Thus, the way to interpret this model's output for
this particular problem statement is to conclude that, "The processing capacity required to support the response
time requirements of this SQL statement is about 5 more than the number of CPUs required to support all the
other load on the system."

Other bottlenecks

The problem statement focuses our attention exclusively upon the CPU capacity required to fulfill our
response time expectations. But what about other potential bottlenecks? What if our SQL statement's total
response time is impacted materially by disk or network latencies? While it is possible to model every
resource that participates in a given function, minimizing the complexity of the model often maximizes the
model's usefulness. If any resource other than CPU is expected to consume the bulk of a function's response
time, then it is reasonable to inquire whether the reason is legitimate.

Changes in input parameters

In school, students are often encouraged to believe the assumptions set forth in a neatly packaged problem
statement. Successful professionals quickly learn that errors in problem statements account for significant
proportions of subsequent project flaws. How can we protect our project from the untrustworthy assumptions
documented in the project plan? By assessing the impact of assumption variances upon our model. What is the
impact upon our result if one or more of the assumptions laid out in the problem statement is inaccurate or is
simply bound to evolve over time?

Overall system performance is very sensitive to even very small variances in average service rate (µ) and
average arrival rate (λ). The model reflects this. The very property that endows these parameters with such
leverage upon overall performance makes the model highly susceptible to errors in estimating them. For
example, overestimating a function's average service rate by just 1% can result in a 10% or worse
underestimate in a loaded system's average response times. Factors that are likely to cause variances in µ or λ
include:

� Invalid testing. Classic examples include tests presumably designed to emulate production database
behavior, but which are conducted using unrealistically simple product setups or unrealistically
miniscule table sizes.

� Changes in data volume, especially for SQL queries whose performance scales linearly (or worse) to
the sizes of the segments being queried [Millsap (2001a)].

� Changes in physical data distribution that might make an index become more or less useful (or
attractive to the Oracle query optimizer) over time [Millsap (2002)].

� Changes to function code path, such as SQL changes or schema changes motivated by upgrades,
performance improvement projects, and so on.

� Changes in business function volume motivated by acquisitions or mergers, unanticipated successes or
failures in marketing projects, and so on.

Page 29 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-9-SECT-4

If uncontrolled variances in sensitive input parameters are likely, then you should take special care to ensure
that the system configuration you choose will permit inexpensive capacity upgrades (or downgrades). With
knowledge of input parameter sensitivity, you will know which input parameters to manage the most carefully.

Page 30 of 30O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 9. Queueing Theory for the Oracle Practitioner

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-9-SECT-5

9.5 Perspective

Performance modeling is a complicated subject. I hope that this chapter helps you understand the technology. But
even more importantly, I hope that you can more understand the constraints of performance. I've met many
performance analysts that pitted themselves in a losing battle against immutable laws of nature. I have constructed this
chapter to help prevent you from falling into the same traps. For a reasonably complete final perspective on the
chapter, I offer you the following points:

� Trial-and-error is an inherently inefficient, expensive, and unreliable performance optimization method. When
a system meets the constraints required for using a mathematical model, it is much more efficient to base
performance optimization decisions upon the model.

� Response time is virtually the only performance metric that end users care about. To the user, response time is
the duration between the issuance of a request and the return of the first byte fulfilling that request. To the
queueing theorist, response time equals service time plus queueing delay. We can reduce response time either
by reducing service time, or by reducing queueing delay.

� On busy systems, response time degrades because of queueing. You can reduce queueing either by reducing
workload, or by reducing service times. Performance analysts often forget that workload reduction is often a
legitimate business option. A mathematical queueing model helps the analyst understand the economic
tradeoffs required to meet both the functional and performance goals of a business.

� The M/M/m queueing model is a well-researched, well-tested model for predicting performance of systems
whose interarrival times and service rates are exponentially distributed. Many Oracle systems meet these
criteria. This chapter provides a full Microsoft Excel implementation of M/M/m, a Perl program to test
whether a sample appears to be taken from an exponential distribution, and detailed instructions for using the
model in an Oracle project.

� One of the most important virtues of using a queueing model is that it structures our thinking about response
time. It reveals the concrete mathematical relationship among the parameters of workload, service rate, and
expectations. Furthermore, it highlights the notion that the way to optimize the business value of a system is to
consider all of these parameters to be negotiable.

� Our worked example showed a common business case: a scenario in which even though CPU is the system's
bottleneck, adding CPU capacity doesn't help the analyst meet the system's performance requirements. The
model in this example reveals what it often reveals in reality: that the most economically efficient way to
improve the performance of a system is to eliminate unnecessary workload. The two principal ways to
eliminate unnecessary workload are to avoid unnecessary business functions, and to reduce application code
path lengths.

� The M/M/m queueing model ignores a number of factors that the performance analyst must take into
consideration. For example, the model assumes perfect scalability across all m service channels. The model is
in several ways optimistic. An optimistic model that forecasts poor system performance is a proof that the
modeled configuration will suffer poor performance in reality. However, an optimistic model that produces a
positive verdict does not prove that the modeled configuration will perform well in reality; some un-modeled
scalability barrier can still ruin the performance of your project.

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 9. Queueing Theory for the Oracle Practitioner

9.6 Exercises

1. Use the M/M/m queueing model to verify all of the results of our worked example.

2. The designers of the new international terminal at the Millsap International Airport (MQP) in Millsap, Texas
have solicited your help in optimizing customer response time. Each new state-of-the-art ticket counter will
host six ticket agents. The airport designers need your help determining whether they should set up one long
snaking queue to feed customers to all six ticket agents (an M/M/6 configuration), or six shorter straight
queues that each feeds one agent (a configuration of six independent M/M/1 systems). Use the M/M/m
queueing model to determine which configuration would provide faster customer response times.

3. A customer has a choice between purchasing two different types of computers. Model H has one CPU that's
capable of executing 40,000 Oracle logical reads (LIOs) per second. Model L has four CPUs arranged in a
symmetric multiprocessing (SMP) organization, but each CPU is capable of executing only 15,000 Oracle
LIOs per second. Which computer should the customer buy?

4. Write a program to retrieve interarrival times from your batch queue manager. Are the numbers exponentially
distributed? Can you find exponentially distributed subsets of your data by restricting the programs for which
you collect interarrival times? Can you find exponentially distributed subsets of your data by restricting the
times of the day for which you collect interarrival times?

5. Does your batch queue manager allow you to measure true service times for your jobs? For example, for a
given job, can you determine how much CPU time the job has consumed? If it is possible, write a program to
retrieve service times from your batch queue manager. Are the numbers exponentially distributed? Can you
find subsets of the data that are exponentially distributed? If your batch queue manager does not reveal true
service times, how might you go about collecting them?

6. An investments brokerage firm has purchased an Oracle Server license and plans to design and build a custom
application to manipulate investment trade transactions. No code has yet been written, but the business
requirements dictate that an end-user receive a query result or transaction confirmation within three seconds of
pressing a key to execute the action. The firm expects to process 30,000 transactions per continental USA
business day, with a peak processing rate of 650 transactions in a five-minute period. A business day in the
continental USA spans from 8:00 a.m. Eastern time through 5:00 p.m. Pacific time (8:00 a.m. Pacific time is
11:00 a.m. Eastern time). There are an estimated 2,000 brokers who will have online access to the new system.

All users are connected to the database server via a complicated system involving LAN links, terminal servers,
and a transaction processing monitor. After deducting time for client-side presentation management, network
response time, and TP-monitor processing, the system designers estimate that out of the three-second response
time tolerance, the time left over for Oracle Server operations for each transaction is about a second and a half,
as shown in Table 9-7.

Table 9-7. Response time requirement for an investments brokerage firm

Max. allowable response time (sec) Execution phase

1.500 Oracle Server response time

 Parse, bind, execute, fetch, etc.

1.500 Total non-Oracle response time

 Client-side presentation management

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-9-SECT-6

7. The client needs advice about hardware and application architecture. Specify a hardware architecture and a
corresponding transaction performance target that will guide the design and development of application SQL
that will meet this brokerage firm's performance requirements.

8. Use M/M/m to model response times of an important business function in your system. Manipulate the model
parameters until the model reliably forecasts measurable present-day performance behavior. For example, if
you have a 10-CPU system with over 100 distinct business functions, experiment with the model as if you had
only a part of one CPU dedicated to a single specific business function. What happens when you double the
arrival rate of that function? What if you could improve the service rate for that function by a factor of 10%?
What would happen to the performance of that function if you could double the amount of CPU capacity you
could dedicate to it? Aside from hardware upgrades, what are some ways that you can increase the amount of
CPU that could be dedicated to a given business function?

 Network response time

 Transaction processing monitor

3.000 Total response time

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part III: Deployment

Chapter 10. Working the Resource Profile

As I illustrate in Chapter 1, response time optimization is a routine part of humans' everyday lives. The foundation of
response time optimization is the commonsense notion, formalized by Gene Amdahl, that improving the largest
component of response time creates the greatest opportunity for response time improvement.

Recall the resource profile format, also introduced in Chapter 1, which is shown again in Example 10-1. Response
time optimization is so "built into us" that most people—including users and business managers with no performance
analysis training—can understand a resource profile with very little effort. Technical and non-technical audiences
alike never fail to respond correctly to Example 10-1 within ten seconds of seeing the data:

I don't know what those two "SQL*Net" things are, but whatever they are, they're consuming nearly
three quarters of the report's total duration. What causes SQL*Net message from client and SQL*Net more
data from client?

This is exactly the right way to attack the problem. Business managers and users to whom I show this example are
routinely confused about how professional performance analysts could have gone for three months believing that latch
contention and CPU capacity were the root causes of this performance problem. (Example 10-1 is the same Oracle
Payroll performance problem that I describe in Chapter 1.) Of course the answer is that the performance analysts on
this project spent three months looking at the wrong diagnostic data.

Example 10-1. Technical and non-technical audiences alike make sense quickly of the resource profile format

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
SQL*Net message from client 984.0s 49.6% 95,161 0.010340s
SQL*Net more data from client 418.8s 21.1% 3,345 0.125208s
db file sequential read 279.3s 14.1% 45,084 0.006196s
CPU service 248.7s 12.5% 222,760 0.001116s
unaccounted-for 27.9s 1.4%
latch free 23.7s 1.2% 34,695 0.000683s
log file sync 1.1s 0.1% 506 0.002154s
SQL*Net more data to client 0.8s 0.0% 15,982 0.000052s
log file switch completion 0.3s 0.0% 3 0.093333s
enqueue 0.3s 0.0% 106 0.002358s
SQL*Net message to client 0.2s 0.0% 95,161 0.000003s
buffer busy waits 0.2s 0.0% 67 0.003284s
db file scattered read 0.0s 0.0% 2 0.005000s
SQL*Net break/reset to client 0.0s 0.0% 2 0.000000s
----------------------------- ----------------- -------------- ------------
Total 1,985.4s 100.0%

My favorite performance improvement epigraph comes from, of all places, an instructional book about golf [Pelz
(2000) 215]:

There's nothing worse than working hard on the wrong thing, expecting improvement from it, then
ending up with nothing.

Resource profiles are superb at telling you what you need to fix whether you know how to fix it or not. They help you
avoid the common Oracle tuning pitfall of fixing the thing you know how to fix without regard to whether your work
will make any difference.

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-10

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 10. Working the Resource Profile

10.1 How to Work a Resource Profile

Although most people seem to innately understand the resource profile format, some formal guidelines usually help
people make the most efficient use of the information. After analyzing several hundred resource profiles since the
year 2000, my colleagues and I have refined our approach into the following guiding principles:

� Work the resource profile in descending order of response time contribution.

� Eliminate unnecessary calls before attempting to reduce per-call latency.

� If a response time component is still prominent after you have eliminated unnecessary calls to the resource,
then eliminate unnecessary competition for the resource.

� Only after eliminating unnecessary calls to a resource and eliminating unnecessary competition for the
resource should you consider increasing the capacity of the resource.

These guidelines have consistently helped us to produce effective optimizations quickly. The following sections
describe the guidelines in detail.

10.1.1 Work in Descending Response Time Order

It is easy to work with a resource profile that is sorted in descending order of response time contribution. You simply
use the data in top-down order. The top-line response time consumer is the resource that provides the greatest
performance improvement leverage. Remember Amdahl's Law: the lower an item appears in the profile, the less
opportunity that item provides for overall response time improvement.

Dave Ensor's "Three Approaches" Model

In public appearances, my friend and fellow O'Reilly author Dave Ensor has noted that there are three
approaches to repairing a response time problem at a specified resource:

� The commercial approach is to add more capacity. This approach indeed optimizes net profit,
return on investment, and cash flow. Unfortunately it usually optimizes these three measurements
only for your vendors . . . not for you.

� The geek approach is to fiddle with configurations and settings and physical layouts and anything
else that might be "tuned" to provide some reduction in request service times. When per-call
latencies are really bad, the technician's compulsion to "tune" those numbers can be irresistible.
This kind of tuning is Most Excellent Fun for the geek in all of us. The best thing is that it keeps
us so busy-looking that we can avoid doing a lot of other things that might not be fun at all. But
unfortunately the effort often results in lots of time invested in return for no noticeable impact.
The ultimate test of relevance is Amdahl's Law.

� The smart approach is to reduce the calls to the resource. The question becomes how to do this.

If you've met Dave or watched him speak, you will understand why, actually, I quite admire Dave for his
restraint in how he has named the three approaches.

Page 1 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Example 10-2 shows a resource profile that was created for a targeted user action on a system with "an obvious disk
I/O problem." The I/O subsystem was occasionally providing single-block I/O latencies in excess of 0.600 seconds.
Most technicians would deem single-block I/O latencies greater than 0.010 seconds to be unacceptable. The ones
produced by this system were fully sixty times worse than this threshold.

Example 10-2. A resource profile created for a targeted user action on a system with a known disk I/O
performance problem

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
CPU service 37.7s 68.9% 214 0.175981s
unaccounted-for 8.4s 15.4%
db file sequential read 5.5s 10.1% 568 0.009630s
db file scattered read 2.1s 3.8% 89 0.024157s
latch free 0.9s 1.6% 81 0.011605s
log file sync 0.1s 0.2% 3 0.026667s
SQL*Net more data to client 0.0s 0.0% 4 0.002500s
file open 0.0s 0.0% 12 0.001667s
SQL*Net message to client 0.0s 0.0% 58 0.000000s
----------------------------- ----------------- -------------- ------------
Total 54.7s 100.0%

However, the resource profile for this targeted user action indicates strongly that addressing the disk I/O problem is
not the first thing you should do to improve response time for the action. The only response time components that
better I/O performance will impact are the db file sequential read and db file scattered read line items. Even if you could
totally eliminate both these lines from the resource profile, response time would improve by only about 14%.

10.1.1.1 Why targeting is vital

Now is a good time to test your commitment to Method R. You might ask, "But fixing such a horrible I/O problem
would surely provide some benefit to system performance...." The answer is that yes, fixing the I/O problem will in
fact provide some benefit to system performance. But it is vital for you to understand that fixing the I/O problem will
not materially benefit this user action (the one corresponding to the resource profile in Example 5-2, and that the
business was desperate to improve). Understanding this is vital for two reasons:

� Any time or materials that you might invest into fixing the "I/O problem" will be resources that you cannot
invest into making material performance improvements to the user action profiled in Example 10-2. If you
have correctly targeted the user action, then working on an I/O problem will be at best an unproductive
distraction.

� Fixing the I/O problem can actually degrade the performance of the user action profiled in Example 10-1. This
is not just a theoretical possibility; we see this type of phenomenon in the field (see Chapter 12). Here's one
way it can happen: imagine that at the same time as the user action profiled in Example 10-1 runs, several
other programs are running on the system as well. Further imagine that these programs consume a lot of CPU
capacity, but they presently spend a lot of time queued for service from the slow disk. To remove the disk
queueing delay for these slow processes will actually intensify competition for the CPU capacity consumption
that presently dominates our targeted user action's response time. In this case, fixing the I/O problem will
actually degrade the performance of the targeted user action.

Yes, fixing the I/O problem will provide some performance benefit to those other programs. But if you have
properly targeted the user action of Example 10-2 for performance improvement, then fixing the I/O problem

Ironically the I/O subsystem "problem" did impact the performance of the program
profiled in Example 10-2. Evidence in the raw trace data revealed that some single-block
I/O calls issued by this user action consumed as much as 0.620 seconds apiece. But even
this knowledge is irrelevant. For this user action, the upside of fixing any I/O subsystem
problem is so severely limited that your analysis and repair time will be better spent
somewhere else.

Page 2 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

will degrade performance in an important action in trade for improving the performance of user actions that
are less important. This result is contrary to the priorities of the business.

For both reasons, if you have properly targeted the user action depicted in Example 10-2, then working on the "I/O
problem" is a mistake. If the user action is not a proper target for performance improvement, then you have not
correctly done the job that I described in Chapter 2.

10.1.1.2 Possible benefits of low-return improvements

Having said this, it is possible that the most economically advantageous first response to a resource profile is to
address an issue that is not the top-line issue. For example, imagine that the I/O subsystem problem of Example 10-2
could be "repaired" simply by deactivating a particular long-running, disk-I/O intensive report that runs every day
during the targeted user action's execution. Imagine that the fix is to simply eliminate the report from the system's
workload, because you discover that absolutely nobody in the business ever reads it. Then the problem's repair—
simply turning off the report—is so inexpensive that you'd be crazy not to implement it.

Mathematically, the return on investment (ROI) of some repair activities can be extremely high because even though
the return R is small, the investment I is so small that R/I is large. It happens sometimes. However, realize that high
ROI is not your only targeted goal. My finance professor, Michel Vetsuypens, once illustrated this concept by tossing
a five-cent coin to a student in our classroom. The student who kept the nickel enjoyed a nearly infinite ROI for the
experience—it cost virtually nothing to catch the coin, and the return was five cents. Although it was probably the
highest-ROI event in the student's whole life, of course adding five cents to his net worth produced an overall impact
that was completely inconsequential. This story illustrates why it is so important that your performance improvement
goal include the notions of net profit and cash flow in addition to ROI, as I describe in Chapter 2.

10.1.2 Eliminate Unnecessary Calls

A well-worn joke in our Hotsos Clinic classrooms is this one:

Question: What's the fastest way to do x? (In our classes, x can be virtually anything from executing
database calls to flying from one city to another, to going to the bathroom.)

Answer: Don't.

The fastest way to do anything is to avoid doing it at all. (This axiom should hold until someone invents a convenient
means of human-scale time travel. Until we can figure out how to make task durations negative, the best we're going
to be able to do is make them zero.)

The most economically efficient way to improve a system's performance is usually to eliminate workload waste.
Waste is any workload that can be eliminated from a system with no loss of functional value to its owner. Analysts
who are new to Method R are often shocked to find the following maxim alive and well within their systems:

Many systems' workloads consist of more than 50% waste.

It's been true for almost every system I've measured since 1989, and chances are that it's true for your system as well.
It's true for good reason: throughout the 1980s and 1990s, when many Oracle performance analysts were trained, we
were actually taught principals that encouraged waste. For example, the once-popular belief that higher database
buffer cache hit ratios are better encourages many application inefficiencies. Several sources illustrate this fallacy,
including [Millsap (2001b; 2001c); Lewis (2001a); Vaidyanatha et al. (2001); McDonald (2000)].

This story also illustrates the fundamental flaw of ratios: they conceal information about
magnitude.

Page 3 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

10.1.2.1 Why workload elimination works so well

Eliminating unnecessary work has an obvious first-order impact upon the performance of the job formerly doing the
work. However, many people fail to understand the fabulous collateral benefit of workload elimination. Every time
you eliminate unnecessary requests for a resource, it reduces the probability that other users of that resource will have
to queue for it. It's easy to appreciate the second-order benefits of workload reduction. Imagine, for example, a
program that consumes CPU capacity pretty much non-stop for about 14 hours (the resource profile in Example 1-4
shows such a program). Further imagine that the program's performance could be repaired so that it would consume
only ten minutes of CPU capacity. (Such repairs usually involve manipulation of a critical SQL statement's query
execution plan.)

It's easy to see why the user of the report that now takes ten minutes instead of fourteen hours will be delighted.
However, imagine also the benefits that the other users on the system will enjoy. Before the repair, users who were
competing for CPU service had to fight for capacity against a process that consumed a whole CPU for more than half
of a day. In the post-repair scenario, the report competes for CPU only for ten minutes. The probability of queueing
behind the report for CPU service drops to a mere sliver of its original value. For the 14-hour period, the benefit to the
system will approximate the effect of installing another CPU into the system.

The collateral benefits of workload reduction can be stunning. Chapter 9 explains the mathematics of why.

10.1.2.2 Supply and demand in the technology stack

So how does one eliminate unnecessary workload? The answer varies by level in the technology stack. I introduced
the concept of a system's technology stack in Chapter 1 when I described the sequence diagram notation of depicting
response time for a user action. The technology stack consists of layers that interact with each other through a supply-
and-demand relationship, as shown in Figure 10-1. The relationship is simple. Demand goes in; supply comes out;
and everything takes time (hence, the demand and supply arrows are tilted downward).

Figure 10-1. This sequence diagram illustrates the supply and demand relationships among technology stack
layers as time moves forward (downward on the page)

Considering your technology stack in this way will help you to understand a fundamental axiom of performance

The benefit of reducing workload in this case will actually be more than the benefit of
adding a new CPU because adding a new chip would have incrementally increased the
operating system overhead required to schedule the additional capacity. Plus, reducing
workload in fact cost less than actually installing another CPU would have.

Page 4 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

improvement:

Almost every performance problem is caused by excessive demand for one or more resources.

Virtually any performance problem can be solved by reducing demand for some resource. You will accomplish the
task of demand reduction by looking "upward" from a high-demand device in the technology stack. (To look upward
in the stack actually means to look leftward in the sequence diagram shown in Figure 10-1.) The question that will
guide your performance improvement effort is this:

Is the apparent requirement to use so much of this resource actually a legitimate requirement?

Consider the resource profile shown in Example 10-3. Almost 97% of the targeted user action's 1.3-hour response
time was consumed waiting for disk I/O calls. The resource profile suggests two possible solutions:

� Reduce the number of calls to some number smaller than 12,165.

� Reduce the duration per call from 0.374109 seconds.

Notice that any improvement to either of these two numbers will translate linearly into the duration for the response
time component. For example, if you can cut the number of calls in half, you will cut the duration in half. Similarly, if
you can cut the per-call duration in half, you will cut the duration in half. Although reductions in call count and
duration per call translate with equal potency to the duration column, it is generally much easier to achieve
spectacular call count reductions than to achieve spectacular per-call latency reductions. I specifically chose the left-
to-right column order of the resource profiles shown in this book to encourage you to see the better solution first.

Example 10-3. A targeted user action whose response time is dominated by read calls of the disk I/O subsystem

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
db file scattered read 4,551.0s 96.9% 12,165 0.374109s
CPU service 78.5s 1.7% 215 0.365023s
db file sequential read 64.9s 1.4% 684 0.094883s
SQL*Net message from client 0.1s 0.0% 68 0.001324s
log file sync 0.0s 0.0% 4 0.010000s
SQL*Net message to client 0.0s 0.0% 68 0.000000s
latch free 0.0s 0.0% 1 0.000000s
----------------------------- ----------------- -------------- ------------
Total 4,694.5s 100.0%

10.1.2.3 How to eliminate calls

How do you reduce the number of events executed by a user action? First, figure out what the resource that's being
consumed does. What causes the Oracle process profiled in Example 10-3 to execute 12,165 multiblock read calls?
Then figure out whether there's any way you can meet your functional requirements with fewer calls to that resource.
In Chapter 11, I explain how to do this for a few commonly occurring Oracle events. You proceed by assessing
whether you can reduce demand for the busy resource at each level as you move throughout the technology stack. For
example:

� Many analysts assume that by increasing the size of the database buffer cache (that is, by allocating more
memory to an Oracle system), they can ensure that fewer of their memory lookups will motivate visits to disk
devices.

� However, moving up the stack a little farther often provides better results without motivating a system
memory upgrade. By improving the query execution plan that your SQL uses to fetch rows from the database,
you can often eliminate even the memory accesses.

� Moving even farther up the stack reveals potential benefits that cost even less to implement. For example,
perhaps running the targeted user action less frequently, or perhaps even not at all (maybe something else

Page 5 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

instead), would not at all diminish the business value of the system.

10.1.2.4 Thinking in a bigger box

Technicians sometimes confine their work to a zone of comfort within the bottom layers of the technology stack. Such
behavior increases the risk of missing significant performance improvement opportunities. For example, at one
customer site I visited in the mid-1990s, the accounting department generated a three-foot-deep stack of General
Ledger (GL) Aged Trial Balance reports every day. Upon learning why the users were running this report so
frequently, the GL implementation leader from Oracle Consulting taught the users how they could acquire the
information they needed more efficiently by running a fast online form. As a result, we were able to eliminate billions
of computer instructions per day from the system's overall workload, with absolutely no "tuning" investment. Not
only was the solution easier on the system, using the online form was actually more convenient for the users than
trying to visually pluck details out of an inch-thick report.

My www.hotsos.com company cofounder, Gary Goodman, tells stories of application implementation projects he led
while he was at Oracle Corporation. One technique that he practiced during an implementation was to simply turn off
every application report on the system. When users would come asking for a report they were missing, his project
team would reactivate the requested report. In Gary's experience, not once did he ever reinstate more than 80% of the
system's original reporting workload. Can you figure out which 20% of your reports your users never use?

At the business requirement layer in your technology stack, the right question for you to answer is:

Which apparent business requirements are actually legitimate business requirements?

For user actions that provide no legitimate business value, simply turn them off. For user actions that really are
necessary, try to eliminate any unnecessary work within them (Chapter 11 describes several ways). Your performance
diagnostic data will drive your analysis from the bottom up, but it's usually cheaper to implement solutions from the
top down. For example, find out whether a report should be deactivated before you tune it. Don't limit your
optimization work to studying only the technical details of how something works. As I described in Chapter 1, the
optimal performance analyst must also invest himself into understanding the relationship between technical workload
and the business requirements that the workload is ostensibly required to support.

Finally, don't forget that from a business's perspective, the users don't just use a system, they are part of the system. A
story told by my colleague Rick Minutella illustrates. A company had called him to optimize the performance of a
recently upgraded order entry application. Table 10-1 shows the performance difference before and after the upgrade.
In a classic Big Meeting with the company's CFO, users, IS department managers, and hardware vendor all in
attendance, the company demanded that Oracle Corporation fix the performance of the order entry form because it
was killing their business.

Waiting 60 seconds for a response from an online order entry form is almost certainly much too long. However, the
argument that "performance of the order entry form is killing our business" is simply not true. Here's why. If the
business processes an average of six calls per hour, then the average duration per phone call is ten minutes. Example
10-4 shows the resource profile for such a call using a 60-second form.

Example 10-4. Resource profile for the order entry process when the form is behaving objectionably

Before optimizing the online order entry form
Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
other 540s 90.0% 1 540s
wait for the order entry form 60s 10.0% 1 60s

Table 10-1. Order Entry performance before and after an upgrade

Performance measurement Value before upgrading Value after upgrading

Order throughput 10 calls/hr 6 calls/hr

Entry form response time 5 sec/screen 60 sec/screen

Page 6 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

----------------------------- ----------------- -------------- ------------
Total 600s 100.0%

What is the maximum impact to the business that can be obtained by optimizing the form? Example 10-4 shows the
answer. If the form's response time can be completely eliminated, total order processing time will drop only to nine
minutes.

Example 10-5. Resource profile for the order entry process if the form's response time could be entirely
eliminated

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
other 540s 100.0% 1 540s
wait for the order entry form 0s 0.0% 1 0s
----------------------------- ----------------- -------------- ------------
Total 540s 100.0%

The problem is that this isn't good enough. If an order clerk could process an order in an average of nine minutes, then
a single clerk could process an average of only 6.67 orders per hour. This of course is still well short of the ten calls-
per-hour requirement. Fixing the performance of this business's online order entry form, by itself, will never improve
throughput to the required ten calls per hour. It's not the form that's "killing the business," it's what the order takers are
doing for the other nine minutes.

Solving this performance problem will require thinking outside the box of conventional "system tuning." What is it
that consumes this "other" time? A few possibilities include:

� If most of the "other" duration results in customer inconvenience (for example, long waits for product ID
lookups), then you should find ways to reduce the "other" duration.

� If most of the "other" duration is spent improving the company's relationship with the customer, then perhaps
it's a better idea to hire more clerks so that an average per-clerk order throughput of about six calls per hour
yields sufficient total order throughput for the business.

Another interesting problem to figure out is whether the "clustering" in time of incoming calls occurs in such a
manner that customers spend a lot of time on hold during busy parts of the day. The queueing theory lessons
presented in Chapter 9 can help you understand how to deal with peak incoming call times more effectively by either
using more clerks or reducing per-call durations. There's a lot to think about. The point is not to constrict your view of
your "system" to just a few bits of hardware and software. Your business needs you to think of the "order entry
system" more broadly as all the participants in the order entry process that influence net profit, return on investment,
and cash flow.

10.1.3 Eliminate Inter-Process Competition

What happens when you have eliminated all the unnecessary calls that you can in the user action under diagnosis, but
its response time is still unacceptable? Your next step is to assess whether its individual per-call latencies are
acceptable. Understanding whether a given latency is acceptable requires some knowledge of what numbers you
should expect. There are surprisingly few numbers that constitute such knowledge. The ones that Jeff and I have
found to be the most important are listed in Table 10-2. These constants will evolve as hardware speeds improve, but
the numbers are reasonable upper bounds for many systems at the time of this writing in 2003. In particular, LIO
numbers vary as CPU speeds vary, and of course CPU speeds are a rapidly moving target these days. The footnote to
Table 10-2 explains.

Table 10-2. Useful constants for the performance analyst [Millsap and Holt (2002)]

Event Maximum tolerated latency per
event

Events-per-second rate at this
latency

Logical read (LIO)[1] 20 ms or 0.000 020 s 50,000

Page 7 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

[1] Experiments published by Jonathan Lewis indicate strongly that you can expect a CPU to perform roughly 10,000 LIO/sec per 100
MHz of CPU capacity [Lewis (2003)]. Hence, on a 1 GHz CPU, you should expect performance of roughly 100,000 LIO/sec, or 10 µs
per LIO. If you are using a 500 MHz system, you should average approximately the 20-µs numbers listed here.

Latencies that violate the expectations listed in Table 10-2 sometimes indicate malfunctioning devices, but more often
they indicate resource queueing delays. What causes long queueing delays? The most likely answer by far is—can
you guess?—excessive demand for the resource. What could be causing that excessive demand? The answer to this
question is, of course, one or more other programs that are competing for resources your targeted user action needs
while it is running.

10.1.3.1 How to attack a latency problem

Example 10-6 depicts a situation in which the overall response time of a targeted user action is excessive because of
excessive individual I/O call latencies. By the time this resource profile was generated, the analyst had eliminated
unnecessary disk read calls, leaving only eighteen necessary calls. However, the average disk read latency of more
than 2.023 seconds per call is far out of bounds compared to the expectation of 0.010 seconds from Table 10-2. From
this resource profile alone, it is impossible to determine whether, for example, each of the 18 disk reads consumed
2.023 seconds apiece, or just one of the disk reads consumed so much time that it dominated the average. (Remember,
it is impossible to extrapolate detail from an aggregate . . . even in resource profiles.)

Example 10-6. A resource profile for a user action whose response time is dominated by unacceptable disk I/O
latencies

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
db file sequential read 36.4s 98.9% 18 2.023048s
CPU service 0.4s 1.1% 4 0.091805s
SQL*Net message from client 0.0s 0.0% 3 0.004295s
SQL*Net message to client 0.0s 0.0% 3 0.000298s
----------------------------- ----------------- -------------- ------------
Total 36.8s 100.0%

However, one thing is clear: something is desperately wrong with the latency for at least one disk read call for this
user action. The following steps will help you get to the bottom of the problem:

1. Which block or blocks are the ones participating in the high-latency I/O calls? Your extended SQL trace file
contains the answers. Chapter 5 and Chapter 6 provide the information you need to find them.

2. Once you know which blocks are taking so long to read, you can work with your disk subsystem manager to
figure out on which devices the blocks reside.

3. Once you've figured out exactly which devices are at the root of the problem, determine whether programs that
compete with your targeted action for the "hot" devices themselves use those devices wastefully. If they do,
then eliminating the waste will reduce queueing delays for the hot device.

4. Assess whether the configuration of the slow device is itself generating wasted workload. For example:

� I've seen systems with two or more mirrors set up so that reads and writes to separate devices
bottleneck on a single controller.

Single-block disk read (PIO) 10 ms or 0.010 000 s 100

SQL*Net transmission via
WAN 200 ms or 0.200 000 s 5

SQL*Net transmission via LAN 15 ms or 0.015 000 s 67

SQL*Net transmission via IPC 1 ms or 0.001 000 s 1,000

Page 8 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

� RAID level 5 disk systems commonly have inadequate I/O call capacities. Using RAID level 5 is not
necessarily a mistake. However, people commonly fail to realize that to provide adequate I/O
performance with a RAID level 5 configuration typically requires the purchase of two to four times
more disk drives than they initially might have believed [Millsap (2000a)].

� It is sometimes possible to move workload from a hot device to one that's less busy during the problem
time interval. System administrators refer to this operation as I/O load balancing. In the early 1990s, I
visited a lot of Oracle sites that had I/O latency problems caused by extremely poor file layouts (such
as putting all of an Oracle database's files on one disk). I don't think this kind of thing happens very
often anymore. However, if you happen to suffer from such a dreadful configuration problem, then of
course it's highly likely that you'll be plagued by excessive I/O latencies, regardless of whether your
application issues a wastefully large number of disk I/O calls or not.

� Faulty hardware can of course cause performance problems as well. A bad disk controller that causes
unnecessary retry or timeout operations can contribute significantly to response time. For inexplicably
slow I/O devices, check your system logs to ensure that your operating system isn't having a hard time
getting your hardware to cooperate.

Steps 3 and 4 are the ones in which experience and creativity can produce excellent payoffs.

10.1.3.2 How to find competing workload

The job of learning which programs are out there competing against your user action resembles conventional
performance tuning, at least insofar as which tools you'll use.

Though the job of digging through details about some high-latency device may remind you of the old trial-and-error
tuning approach (Method C from Chapter 1), there is an important distinction. That distinction is the hallmark of
Method R—the ever-present companion of deterministic targeting. You won't be sifting through innumerable
performance metrics wondering which ones might have a meaningful performance impact and which ones don't.
Instead, you'll know exactly which resource it is that you're trying to improve. You'll know, because your resource
profile has told you.

The most difficult part of finding a user action's competitors is a problem with collecting properly scoped diagnostic
data. This is when it would really pay off to have a detailed X$TRACE-like history of everything that happened on a
system during your performance problem time interval. Without such a history of detailed diagnostic data, it can be
difficult to find out which programs were competing against your targeted user action, even if the action you're trying
to improve just finished running a few minutes ago. There are several ways to make progress anyway, including:

Batch queue manager logs

Practically by definition, the most intensely competitive workload on a system is that motivated by batch
programs. Most good batch management software maintains a log of which jobs ran at what times. Beginning
with this information, it is often easy to guess which programs motivated significant competition for a given
resource. You can graduate from guesses to complete information by collecting properly scoped diagnostic
data for these programs the next time they're scheduled to run.

Oracle connect-level auditing

There are lots of tools available for analyzing a specific resource in detail. The Oracle
fixed views described in Chapter 8 are excellent places to look first.

Page 9 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

It is easy to configure an Oracle instance to perform lightweight logging of session-level resource
consumption statistics. These statistics can help you determine which sessions were responsible for the
greatest workloads on the system over a specified duration. Once you have that information, then usually a
brief end-user interview is all it takes to construct a good guess about which programs might have motivated
the competition for a given device. Again, you can graduate from guesses to complete information by
collecting properly scoped diagnostic data for the suspects at some time in the future. To get started, search
your Oracle documentation for information about the DBA_AUDIT_SESSION view.

Operating system process accounting

Some operating systems provide the capability to collect and record relevant performance statistics for
individual programs. This capability can be important, because not all competition for a specified resource is
necessarily motivated from another Oracle process.

Custom timing instrumentation

There's nothing better for the performance analyst than application code that can tell you where it spends all of
its time. If you have the ability to instrument the code that is performing poorly (for example, because it is
code that you wrote), then instrument it. Chapter 7 explains how, in detail.

When you find the programs that are competing with your targeted user action for a "hot" resource, use the techniques
described earlier in Section 10.1.2 Your job becomes the familiar one of determining whether the requirement to
overburden the resource is really a legitimate requirement.

10.1.4 Upgrade Capacity

Capacity upgrades are the last place you should look for performance improvement opportunities. The reasons for
last-place status are straightforward:

� It is seldom possible to make as much progress with an expensive capacity upgrade as you can make with an
inexpensive round of wasted workload elimination.

� Capacity upgrades, if executed without sufficient forethought, can actually degrade the performance of the
user action you're trying to improve.

Any capacity upgrade is a gamble. The first observation says that an investment into faster hardware has a potentially
lower payoff than you'd like. Many managers think of capacity upgrades as guaranteed investment successes, because
"How can you ever have too much CPU [or memory, or disk, or whatever]?" The popular belief is that even if the
performance problem at hand doesn't benefit directly from the upgrade, how can it hurt? You'll use the spare capacity
eventually anyway, right? Well, not exactly. The gamble has a downside that a lot of decision-makers don't realize.
I've already described one downside situation in Section 10.1.1.1. The case in Section 12.1 is another example of the
same problem:

A capacity upgrade is going to help some part of a system's workload, but the key issue is whether a
capacity upgrade will help a system in alignment with the business priorities of its owner.

The first formal explanation that I ever read about such a counterintuitive possibility was in Neil Gunther's Practical
Performance Analyst [Gunther (1998) 117-122]. When I presented Gunther's example to Oracle conference audiences
worldwide, participants without fail would approach the podium to share the news that by seeing Gunther's example
they could finally explain the bizarre result that had plagued some past project. I was pleased but actually a little
surprised by how many different people had seen hardware upgrades degrade system performance. After gaining
some intimacy with Amdahl's Law, it became clear to me that any capacity upgrade can degrade the performance of
some user action by unleashing extra competition for a resource that was not upgraded. The real key is whether or not
the harmed user actions are ever noticed.

Page 10 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-10-SECT-1

When capacity upgrades fail to improve performance, the results are some of the worst project disasters imaginable.
Here's what happens. A company lives with a performance problem long enough that the collective pain rises above
some threshold that triggers the expenditure of cash for an upgrade. Expectations form in direct proportion to the size
of the expenditure. So, on the Friday before the Big Upgrade, a whole company is nervously awaiting Monday, when
"We're spending so much money to fix this problem that performance is bound to be spectacular." Then when
Monday rolls around, not only is performance unspectacular, it's actually worse. By Tuesday, the business is assessing
whether the person who suggested the upgrade should bother to come to work on Wednesday.

Capacity upgrades motivate interesting ironies:

� Decision-makers often regard capacity upgrades as inexpensive alternatives to expensive analysis, yet the
upside potential of capacity upgrades is severely limited in comparison to the upside potential of workload
reduction.

� Decision-makers often perceive capacity upgrades as completely safe, yet they bear significant downside risk.
Their downside potential actually demands serious, careful, and possibly even expensive analytical
forethought.

Even when capacity upgrades work, they usually don't work as well as the people doing the upgrade had hoped. When
capacity upgrades don't work, they jeopardize careers. The failures are often so visible and so spectacular that the
project sponsors never regain their credibility.

Are hardware upgrades ever necessary? Certainly, there are many cases in which they are. But I implore you not to
consider hardware upgrades as a first-line defense against performance problems. Is your system really under-sized?
Odds are that its workload is just bigger than it needs to be. So, please, eliminate wasteful calls to a resource before
you upgrade it. And when you do upgrade a resource, then make sure you think it through first:

Don't upgrade capacity until you know that the resource you're upgrading is going to (a) help important
user actions, and (b) harm only unimportant ones.

And, of course, don't lose sight of the fact that a user action that's unimportant today might become important
tomorrow if you slow it down.

Page 11 of 11O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 10. Working the Resource Profile

10.2 How to Forecast Improvement

One of the nicest things about the resource profile format is the ease with which you can predict the impact of a
proposed improvement activity. Figure 10-2 shows a simple Microsoft Excel workbook that you can use to
accomplish this task.

Figure 10-2. A simple performance improvement calculator that shows the expected response time benefit of
reducing the number of calls of some "thing to be improved" from 200 calls to 10 calls

In the workbook shown here, I have specified in my Baseline case that a component called "thing to be improved"
presently consumes 300 seconds of duration and is called 200 times. Another response time component called "all
other" accounts for 100 seconds of total duration and is called only once.

In columns G through K, the workbook formats my input data into a full resource profile format.

In my Proposed case, I have specified that I think I can eliminate all but 10 of the calls to "thing to be improved." In
cell E16, I have used the formula =K8 to denote that I believe my per-call latency will remain the same. In columns G
through K, the workbook formats my Proposed case input data and produces a response time reduction summary. If I
really can reduce the number of calls to "thing to be improved" from 200 to 10, then I should expect to see a response
time improvement of about 285 seconds for this user action, or an elimination of about 71% of its response time.

Excel is a good tool for analyses like this one, because it allows you to see quickly "what if" you were to try a given

The call count that I enter for "all other" is irrelevant because I'm not going to be
calculating the impact of any proposed change to its behavior.

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-10-SECT-2

performance improvement activity. For example, which is better, to reduce the call count for "thing to be improved"
from 200 to 10? Or to reduce the per-call latency from 1.5 seconds to 0.5 seconds? Figure 10-3 shows that the better
answer in this case is to reduce the call count. Of course, you could also use the tool to determine the impact of
implementing both performance improvement activities.

Figure 10-3. The performance improvement calculator shows plainly that reducing the duration per call from
1.5 sec/call to 0.5 sec/call for some "thing to be improved" can be expected to deliver less response time benefit

than the benefit shown in Figure 10-2

This simple model doesn't account for the secondary benefits that call count reduction is
bound to have by reducing the queueing component of per-call latencies.

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 10. Working the Resource Profile

10.3 How to Tell When Your Work Is Done

Of the profound problems that plague conventional Oracle tuning methods, one of the most serious is the absence of a
termination condition. As a result, conventional performance improvement projects are notorious for lingering until
either the patience or the money runs out (hence the compulsive tuning disorder (CTD) phenomenon I mentioned in
Chapter 3). By contrast, Method R specifies a termination condition:

If even the best net-payoff activity produces insufficient net payoff, then suspend your performance
improvement activities until something changes.

How can you determine when the best net-payoff activity produces insufficient net payoff? If you can accurately
forecast a performance improvement project's net payoff, then it's a straightforward financial analysis problem. Your
company should allocate each unit of its cash to the activity that does the best job of net profit, return on investment,
and cash flow simultaneously. If your project's expected financial performance is better than all the other ways your
company could spend its next bit of capital, then your project should be next in line for implementation.

In reality, it is entirely appropriate for most performance improvement projects to be executed with no formal
financial analysis. Many companies have full-time staff who are responsible for executing performance improvement
activities whenever they're deemed necessary. In many circumstances, full-time analysts tinker with performance
theories for a few hours each week. The incremental expense incurred by an analyst's affliction with even third-
degree, adult-onset CTD is small enough to go unnoticed in most companies.

Even in situations where performance analysts have some extra time on their hands, it's still inconvenient not to be
able to figure out whether a given user action has been truly optimized—that is, made as fast as it can possibly go.
When you measure performance with the system-wide statistics that conventional tuning methods prescribe, it is
virtually impossible to know. However, the response-time focus of Method R provides the means to know whether a
user action contains any more room for performance improvement. It's actually pretty easy to determine from a
resource profile and its underlying extended SQL trace data whether it's going to be possible to squeeze any more
response time improvement out of a user action.

Example 10-6Example 10-6 illustrates what a resource profile looks like when a targeted user action has been
optimized. Notice the following attributes of the pattern:

1. Total response time is small. This attribute is essential. If your total response time is not sufficiently small,
then you're not done yet—it doesn't matter what other patterns exist within your resource profile. Your
business defines the value of "sufficiently small," as I describe in Chapter 4.

2. Total response time is dominated by CPU consumption (usually more than 80% of total response time), but
the application uses no unnecessary CPU capacity.

3. Database file reading or writing consumes more time than any response time component other than CPU
service. The number of read or write calls is small.

4. Aside from CPU service and database file reads or writes, there's very little other time being consumed.

If a resource profile looks like Example 10-6, then you're finished if the total response time ([1]) is small enough. If
total response time is not small enough and the remaining attributes hold ([2], [3], and [4]), then the only thing you
can do to improve performance appreciably is to upgrade your CPU speed.

Example 10-7. The goal state resource profile

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-10-SECT-3

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------

CPU service [2] [small]s 80.0%
[database reads or writes] [3] [small]s <20.0% [few]
[everything else] [4] [small]s <10.0% [few]
----------------------------- ----------------- -------------- ------------
Total [1] [small]s 100.0%

Why does an optimal resource profile have CPU service and physical I/O at the top? It's natural, really. Something has
to be at the top, of course, as long as the total response time is non-zero. What would you like it to be? A database has
a very simple job to do, really: to manage data held in long-term storage. A database reads, processes, and writes data.
CPU service shows up ahead of physical I/O in an optimal resource profile because I/O performance problems are
usually cheaper and easier to fix (usually by optimizing application SQL). When a problem is cheap to fix, you're
likely to fix it, which reduces the duration motivated by that problem until another event surfaces to the top of the
profile. Thus, CPU service bubbles to the top of the profile on a system as its performance is improved. Even when
the CPU service number is small, it usually becomes the top-line item because most applications force Oracle to
spend a lot more time processing data than reading or writing it.

All other activities that a database does are generally "necessary but unwanted." For example, the latch free event
denotes the use of a resource that is necessary to prevent the corruption of several Oracle internal data structures
under conditions of high concurrency use [Millsap (2001c)]. We all need for the "sleep if a latch is unavailable"
feature to be there, but our applications will run faster if we can make them wait for latch free events as infrequently as
possible. This "need the feature but want to avoid using it" category accounts for the vast majority of Oracle's few
hundred so-called wait events.

You're finished when the cost of call reduction and latency reduction exceeds the cost of the performance you're
getting today.

If a query is well-tuned, then it will probably consume more CPU than any other resource.
However, this is not equivalent to saying, "If a query consumes more CPU than anything
else, then it is well tuned." It is quite possible that a query can consume less CPU capacity
than it does and still return the correct answer. The most likely way to accomplish this is...
(drum roll, please) ...eliminate unnecessary LIO calls.

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part III: Deployment

Chapter 11. Responding to the Diagnosis

To improve Oracle performance, you must of course understand the technology of each response time component that
contributes significantly to your targeted user action's response time. The place you should begin your research is the
Oracle Database Concepts guide at http://technet.oracle.com. The response time components that show up in your
resource profiles associate directly to instrumented Oracle kernel actions described in the Concepts guide. For
example, it describes how the Oracle LGWR process copies content from the redo log buffer to an online redo log
file. An Oracle kernel process accounts for the time it spends waiting on LGWR to perform this particular action with
the wait event called log file sync.

There are lots of other such events. The number of wait events inside the Oracle kernel has grown with each new
release, as shown in Table 11-1. Thankfully, it is not important for you to know a lot of details about every Oracle
wait event. You usually don't need the gory details in your brain for any more than a couple of wait events at a time—
the ones that are dominating your targeted user action at the moment. This is excellent news, because some of the
events require some study time to understand. Rather than learn and try to retain a lot of details about dozens of
events, I think it is more important to focus on the following:

� Know how to target the events that are important to you right now. I describe how to do this in Part I.

� Retain a general knowledge about the meanings of just a few response time components that will occur
frequently on your system, including:

� CPU service

� unaccounted-for

� SQL*Net message from client

� The various read events

� The one or two other events that occur frequently on your system

You can acquire this knowledge by studying this book, the Oracle Database Concepts guide, and the response
time behavior of targeted user actions on your own system.

� Know where to find the details about a response time component when you need them. My favorite tools for
finding wait event information are:

� Oracle database product documentation at http://technet.oracle.com

� Oracle MetaLink support bulletins and bug reports at http://metalink.oracle.com

� Anjo Kolk and Shari Yamaguchi's YAPP paper [Kolk and Yamaguchi (1999)]

� Steve Adams's bumblebee book [Adams (1999)], and his web site at http://www.ixora.com.au

� The Google search engine at http://www.google.com, which helps me find wait event documentation

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-11

throughout the Internet

Table 11-1. The number of Oracle wait events grows with each Oracle release (source: select count(*) from
v$event_name)

Oracle release Number of wait events

7.3.4 106

8.1.7 215

9.0.1 287

9.2.0 361

10.0.1 500 (est.)

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 11. Responding to the Diagnosis

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-11-SECT-1

11.1 Beyond the Resource Profile

The resource profile is an excellent first step that allows you to target the right piece of a user action's response time
for detailed analysis. But once you understand which response time component dominates your user action's response
time, what do you do next? The answer is simple:

Find the source text (the SQL or PL/SQL) of the cursor that contributes the most to the duration of the
component.

Doing this with extended SQL trace data is straightforward, as I explain in Section 5.6. Once you have found the SQL
text of the first cursor action that contributes the most to your top response time component duration, you're well on
the way to constructing a remedy. Your next step is to learn why the source code you've found motivates so much
time spent at this component. The next section describes how to find out.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 11. Responding to the Diagnosis

11.2 Response Time Components

When I began work on this chapter, I had in mind that I would write details about the twenty or so Oracle wait events
that you would encounter most commonly in your work. However, Oracle Corporation has done such a good job
improving its wait event documentation in the past few years that I think rehashing that information would be a waste
of your time. The Oracle9i release 2 performance documentation [Oracle (2002)] is actually quite good. Rather than
rehash what you can obtain freely from other sources, I focus my effort in this book upon three topics that are missing
from the standard Oracle documentation:

� Treatment of the two pseudoevents ("events" that are not really events) whose durations you can obtain from
extended SQL trace data: CPU service and unaccounted-for time.

� More comprehensive description of a few so-called idle wait events that other authors dismiss as unimportant.
These events become very important in light of the improved diagnostic capabilities that you gain if you
collect performance diagnostic data with proper time and action scope.

� More emphasis on how to eliminate wasteful workload in reaction to the appearance of various wait events.

In this section, I cover the pseudoevents and so-called idle wait events. Later in the chapter, I cover the topic of
workload elimination.

11.2.1 Oracle Pseudoevents

You may by now have noticed that I use the term "response time component" in places where you might have
expected the term Oracle "wait event." The reason I do this is simple. What I'm calling response time components
consists of two different things: actual Oracle wait events described in V$EVENT_NAME, and two other important
components of response time that do not show up in V$EVENT_NAME:

CPU service
unaccounted-for

Though neither of these components is officially an "Oracle wait event," each is a measurable (and often significant)
component of response time for every user action imaginable. I include them on par with the Oracle wait events
because every microsecond an Oracle kernel process spends "working" contributes just as much to user action
response time as a microsecond spent "waiting." Recent versions of Statspack include CPU time in its list of top five
"wait events" as well.

11.2.1.1 CPU service

CPU service will be a response time component of virtually every Oracle resource profile you'll ever see. It is often
the dominant contributor to response time, both for efficient user actions and for extremely inefficient ones. The key
is to understand whether the apparent requirement to consume as much CPU capacity as you're seeing is actually a
legitimate requirement (Chapter 5).

Your first step in diagnosing excessive CPU service durations is to learn which database calls are predominantly
responsible. Forward attribution is not necessary for determining the root cause of excessive consumption of CPU
capacity, because the c statistics that define CPU service durations sit right on the trace file lines for the database calls
themselves. Once you've identified the calls that are most responsible for the CPU service consumption, it's easy to
search backward in the trace file for the appropriate PARSING IN CURSOR sections that identify the source text (SQL
or PL/SQL) motivating those calls.

Page 1 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The database calls you should attend to first are the ones with the greatest progeny-exclusive c values. If a database
call's high c value is the result of consumptions rolled up from its expensive recursive children, then determine the
call's progeny-exclusive CPU capacity consumption by using the technique described in Section 5.3.3. Remember, a
database call's CPU and LIO statistics (c, cr, and cu) are among those that roll up from child to parent.

Once you've found the database calls that contribute the most to your targeted user action's CPU service duration, the
following items describe what action to take, depending upon the type of database call that has consumed the most
CPU service:

Large c value for a FETCH, EXEC, UNMAP, or SORT UNMAP database call

If you have many small c values distributed across a large number of FETCH or EXEC calls, then eliminate as
many unnecessary database calls as possible, and consolidate the calls that remain into the smallest number of
database calls that you can (for example, process arrays of rows instead of processing one row at a time).

If you have a large c value for an individual FETCH or EXEC database call, then first determine whether the
large CPU duration was due to logical I/O (LIO) processing:

High LIO count (more than about 10 LIO calls per non-aggregate row returned per table in the FROM clause)

If the LIO count for the call is high, then optimize the SQL as I outline in Section 11.3.1 later in this
chapter.

Low LIO count

If the call's LIO count is low, then the Oracle kernel process may have consumed an excessive amount
of CPU capacity performing sort or hash operations. Events 10032 and 10033 provide detailed
information about Oracle sorting operations, and event 10104 provides detailed information about hash
joins.

Another possibility is that the time consumption was the result of type coercion operations. For
example, a table scan that does a date comparison for every row could use a lot of CPU.

Finally, perhaps the time consumption was the result of excessive PL/SQL language processing. For
example, PL/SQL instructions of course consume CPU capacity, even when they don't make any
database calls. High c durations in EXEC trace file lines for PL/SQL blocks that have low progeny-
exclusive LIO counts often indicate that branching, assignments, and other language processing
elements are consuming excessive CPU capacity. You can use Oracle's DBMS_PROFILER package to
diagnose PL/SQL language processing performance in detail [Kyte (2001)].

Large c value for a PARSE call

If you have many small c values distributes across a large number of PARSE calls, then eliminate as many
parse calls as you can, using methods outlined in Section 11.3.2 later in this chapter.

If you have a large c value for a PARSE call, then investigate whether the SQL statement can be simplified.
Also consider reducing the value of OPTIMIZER_MAX_PERMUTATIONS (see
http://www.ixora.com.au/q+a/0010/19140702.htm for more information).

11.2.1.2 unaccounted-for

As I describe in Chapter 7, there are five sources of unaccounted-for time in a trace file, which create non-zero ∆

Page 2 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

values in the equation e = c + Σela + ∆:

� Measurement intrusion effect

� Double-counting of CPU service between c and ela statistics

� Quantization error

� Time spent not executing

� Un-instrumented time

Having so many unknowns in a single equation might suggest that it is impossible to isolate the effect of any one
contribution to ∆. However, in reality dealing with unaccounted-for time is simple. Three of the five sources of
unaccounted-for time are constrained so that their overall impact upon response time tends to be negligible. If
unaccounted-for is the largest component of a user action's resource profile for properly scoped diagnostic data, then
the indication is almost always either un-instrumented time or time spent not executing. If un-instrumented Oracle
kernel code is the source of your unaccounted-for time, then you're probably an Oracle patch application away from
reducing the number of material unaccounted-for time sources to just one.

Chapter 7 explains the details of the five different contributors to unaccounted-for response time components. Here is a
recap:

Measurement intrusion effect

The effect of measurement intrusion is small (on the order of a few microseconds per gettimeofday or getrusage
call), so overall it is generally safe for you to ignore it. If you are concerned about measurement intrusion, you
can measure its exact effect using techniques outlined in Chapter 7. Measurement intrusion effect influences ∆
slightly in the positive direction.

Double-counting of CPU service between c and ela statistics

The double-counting effect is small for most events. The largest impact I've seen from this effect occurs with
db file scattered read events involving large data transfers (on the order of 100 KB or more). In such cases, I
have seen apparent CPU double-counting of roughly one centisecond per read event. CPU double-counting
influences ∆ slightly in the negative direction.

Quantization error

The overall effect of quantization error is also small. Because positive and negative quantization errors occur
with equal probability, the errors tend to counteract each other, resulting in a nearly net-zero effect upon ∆.

Time spent not executing

Most real-life instances of large unaccounted-for time durations are caused by errors in data
collection such as the ones described in Chapter 3 and Chapter 6. If you are very careful
to target exactly the data you need when you collect your performance diagnostic data,
then you can exploit the full benefit of the knowledge contained within your unaccounted-
for component durations.

Page 3 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

If the magnitude of total unaccounted-for duration of a resource profile is significant, then you have almost
certainly discovered either time spent not executing or un-instrumented time. A good rule of thumb is given in
Table 11-2. Time spent not executing always influences ∆ in the positive direction.

Un-instrumented time

If your application executes a significant amount of un-instrumented Oracle kernel code path, then the effect
in the resource profile is indistinguishable from the effect of time spent not executing. Chapter 7 describes
how you can detect the existence of un-instrumented code path. If unaccounted-for time dominates total
response time on even a system that's not excessively context switching, paging, or swapping, then patch your
Oracle kernel so that the your user action's code path is correctly instrumented. Un-instrumented Oracle code
segments always influence ∆ in the positive direction.

Table 11-2. Rule of thumb for dealing with unaccounted-for duration ∆∆∆∆, where R is the total response time
for the user action under analysis

Condition Indication

∆ is negative and has
magnitude of more than
10% of total response time

That is, ∆ < -0.1R

This is an extremely rare (but hypothetically possible) case in which error from CPU
double-counting dominates your statistics for an entire trace file. (You can usually
detect this phenomenon by analyzing extended SQL trace data for only a single
database call.)

∆ is between -10% and 10%
of total response time

That is, -0.1R ∆
+0.1R

Ignore the unaccounted-for duration. It is a small enough contributor to total response
time that it is not necessary to understand the exact cause.

∆ is positive and more than
10% of total response time

That is, +0.1R ∆

If unaccounted-for duration is not a dominant contributor to total response time, then
ignore.

Otherwise, if your user action spent little time in the ready to run OS state (Chapter
7), then check Oracle MetaLink for information pertaining to un-instrumented Oracle
kernel code.

If your user action spent a lot of time in the ready to run OS state, then the
unaccounted-for duration was most likely caused by inadequate CPU or memory
capacity for the given workload.

"Idle" Is a Four-Letter Word

Any good book about the Oracle wait interface must discuss the so-called idle wait events. Authors tag
"idle" events as special because they represent code path in the Oracle kernel in which a kernel process
awaits an instruction to do something. System monitoring tools specifically omit statistics about idle wait
events. For example, Oracle's Statspack utility contains a table called STATS$IDLE_EVENT that holds the
names of events database administrators commonly omit from the Statspack reports upon
V$SYSTEM_EVENT. Those events are:

dispatcher timer
lock manager wait for remote message
pipe get
pmon timer
PX Idle Wait
PX Deq Credit: need buffer

Page 4 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

11.2.2 No Event Is Inherently "Unimportant"

In most publications that are in print while I'm writing this chapter, authors still distinguish carefully between events
that are idle and events that are non-idle. Those authors generally describe the non-idle events as the important ones,
and the idle ones as unimportant. However, I encourage you to make only one classification of Oracle wait events: the
between/within distinction that I introduce in Chapter 5. You need to understand this distinction to use the

fundamental relation among trace file statistics, e c + Σela, without introducing omissions or double-counting
errors. The reason I encourage you to make no other classification of Oracle wait events is that any event can be an
important contributor to response time.

There is only one legitimate criterion for determining whether a response time component is important:

If a component contributes significantly to the response time of a properly targeted user action, then it
is important; otherwise, it is not.

Therefore, I disagree with generalized claims that some events are "important" and that others are not. Any event can
be important. It doesn't matter what event it is or how many authors say it's not important. If an event contributes
significantly to the response time of a properly targeted user action, then the event is important to you.

How can "idle" events ever be important? When the time spent executing them contributes significantly to response
time. Two events that you will encounter in almost every resource profile you will ever see are the events SQL*Net
message to client and SQL*Net message from client. The from client event is irrefutably a so-called idle event. The Oracle
kernel uses these to client and from client events to measure the performance of interprocess communications that
take place through SQL*Net. Example 11-1 depicts how the events work inside the Oracle kernel.

Example 11-1. Typical code path that the Oracle kernel executes upon the completion of a database call

database call completes here

write the result of the db call to the client through SQL*Net
ela0 = gettimeofday;
write (SQLNET, ...);
ela1 = gettimeofday;
nam = 'SQL*Net message to client ';
ela = ela1 - ela0;
printf(TRCFILE, "WAIT #%d: nam='%s' ela= %d' ...", cursor, nam, ela, ...);
printf(TRCFILE, "\n");

PX Deq Credit: send blkd
rdbms ipc message
smon timer
SQL*Net message from client
virtual circuit status

As you've already seen in Chapter 8 (Section 8.3.7.1), authors drop various wait events into the "idle"
bucket to solve a problem that is caused by improperly scoped diagnostic data. Improperly scoped
diagnostic data forces the analyst to ignore "idle" events, even when those events contain vital
information. However, if you collect properly scoped diagnostic data, then whether an event is "idle"
becomes an unproductive distraction. Rather than classify events as "idle" or "non-idle," in Chapter 5, I
introduce the classification of events that execute within the context of a database call versus events that
execute between database calls.

While it is tempting to equate what other authors refer to as idle events with what I refer to as between-
call events, even this is not a reliable mapping. Between-call events and the idle wait events are not
synonyms. For example, the PX Deq Credit: need buffer event is a within-call event. Other events that are
often considered idle, like SQL*Net more data from client and SQL*Net more data from dblink, also occur within
the context of a database call, not between calls.

Page 5 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

listen to SQL*Net for further instructions from the client
ela0 = gettimeofday;
read (SQLNET, ...);
ela1 = gettimeofday;
nam = 'SQL*Net message from client ';
ela = ela1 - ela0;
printf(TRCFILE, "WAIT #%d: nam='%s' ela= %d' ...", cursor, nam, ela, ...);
printf(TRCFILE, "\n");

next database call gets processed here

SQL*Net message to client events typically consume only a couple of microseconds. But SQL*Net message from client
events can take much longer. For example:

User think time

If you connect to Oracle at 08.00 and then not issue a single database call until 10.00, Oracle will tally 7,200
seconds of SQL*Net message from client to V$SYSTEM_EVENT.TIME_WAITED at 10.00.

Client program execution time

An Oracle Applications Financial Statement Generator report (a batch program that executes as an Oracle
client process) will typically make some database calls and then spend a comparatively long time executing C
code in the client program upon the retrieved data. From the Oracle kernel process's perspective, this time
consumed by the client is simply time consumed blocked upon the read call depicted in Example 11-1, so the
time is logged as SQL*Net message from client.

Inter-call latency

Even when an application issues two database calls in rapid succession, it is common for the SQL*Net message
from client event that occurs between the calls to have a latency of hundreds of microseconds.

Notice a couple of things from these examples. First, from looking at diagnostic data alone, it is impossible to
determine which "database idle" time is actually part of someone's response time, and which "database idle" time is
simply time that a user spends not paying attention to her screen. Knowing the difference requires knowledge of the
user experience. Second, although the latency between rapid-fire database calls is only a few hundred microseconds,
the total time adds up. For example, even if your average SQL*Net message from client latency is a microscopic 500 µs,
then 1,000,000 database calls will generate a full 500 seconds (8.3 minutes) of response time.

11.2.2.1 Responding to large SQL*Net response time contributions

These observations lead us to an understanding of how to respond to a resource profile that is dominated by between-
call event durations. If a between-call event dominates your resource profile, here is what to do:

1. Confirm that the between-call event duration is actually a component of someone's response time. If not, then
correct the data collection error and construct a new resource profile.

2. If a between-call event's response time contribution is high because of a few large latencies, then investigate
why the application spends so much time between database calls.

3. Otherwise, if the between-call event's response time contribution is high because the number of calls to the
event is so large, then investigate why the application makes so many distinct database calls.

4. If you cannot reduce the number of distinct database calls, then investigate whether you can improve the
individual wait event's average latency. For example, eliminate other processes' unnecessary database calls
that might be causing queueing delays for network resources.

Page 6 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The SQL*Net events whose latencies are most likely to dominate a resource profile are:

SQL*Net message from client

The remedy for this event is to eliminate as many unnecessary database calls as possible. For example,
eliminate redundant parse calls (see Section 11.3.2 for details). Use Oracle's array processing features to
manipulate many rows per database call instead of just one.[1]

[1] The same advice applies to the job of eliminating single-task message events. The single-task message event is not
a SQL*Net event, but its use is the single-task analog of the SQL*Net message from client event on two-task process
configurations.

SQL*Net more data from client

If you are passing enormous SQL text strings in your application's parse calls, then stop it. Instead, issue
stored procedure calls from the application. However, if you are sending large arrays of values to be bound
into placeholders ("bind variables") in your SQL text, then you may not be able to reduce the time spent
waiting for this event without creating some other, worse problem.

SQL*Net message from dblink

Consider replicating data locally instead of joining across a database link. Replication can be operationally
efficient, especially for tables that change very rarely, or for which using slightly stale data produces
negligible functional harm. It may be possible to eliminate executions of this event by reworking a SQL
statement's execution plan so that less data are transmitted between instances.

11.2.2.2 Responding to large response time contributions from other events

Occasionally, you'll find an unsatisfactorily large response time contribution from an event you've never heard of.
There are many Oracle wait events that I don't cover in much detail within this book. However, the pattern of your
response shouldn't vary, even when your number one performance problem is something you don't know how to fix.
The sequence of steps should sound familiar to you by now:

1. Identify the event that's consuming most of your user action's response time.

2. Determine what action causes the event to be executed so many times.

3. Make the application do that action less often.

Notice that this sequence of steps is completely consistent with the procedure laid out in
Chapter 5. First, eliminate unnecessary calls. Next, eliminate unnecessary interprocess
competition.

You can derive a good approximation of the number of network round-trips an application
generates by counting the number of event executions whose nam values have the string
SQL*Net in them. Studying the ela values for these event executions of course results in
powerful evidence about whether your network latencies are a contributor to a response
time problem.

Page 7 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-11-SECT-2

Of course, step 1 is pretty thoroughly documented throughout this book. Steps 2 and 3 are not much more difficult.
The names of most events give you a big clue about their meanings. For example, the PX events are emitted by code
path within Oracle's parallel execution capability. Once you learn how parallel execution works, the meanings of the
PX events become clear: a master session assigns work to slave sessions and waits for the results. The slaves do most
of the work. Another example: a global cache cr request event is what a RAC-enabled Oracle kernel process emits when
it needs to access a database buffer held by another RAC instance. How do you get rid of global cache cr request
executions? Require fewer buffers from the other instance, or perhaps fewer buffer visits in general (see Section
11.3.1, below).

Even if the event is something you've never heard of, and you find its name completely incomprehensible, Method R
takes you to the threshold of a solution. As I mention at the beginning of this chapter, there are several references
available to you, free of charge on the Internet. Even the worst case imaginable isn't very bad. If you find absolutely
no help on the Internet, your call to Oracle Corporation product support should be much easier than you might expect:

Support call without Method R: My system is slow. We're desperate, but we have no clue what to do.
What can we do to fix it?

Depending upon which support analyst you get, be prepared for just about anything. However, with Method R, your
support call should be considerably more tightly scoped.

Support call with Method R: The response time for the most important user action on my system is
75.32 seconds. Of that time, more than 73 seconds are spent executing an event called resmgr:waiting in
check2. Can you please tell me (1) what action in my application is causing this Oracle kernel code path
to be executed? And (2) what can I do to execute it less often?

It's a rhythm you get into: find out why an event was executed; find out how to avoid it next time. It's a rhythm that
works.

Page 8 of 8O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 11. Responding to the Diagnosis

11.3 Eliminating Wasteful Work

Oracle Corporation's wait event documentation has come a long way since the old days when the Oracle7 Server
Tuning guide provided its comically bad advice to users of the new V$SESSION_WAIT view (Chapter 8). There's one
area to which I wish Oracle would devote more focus, however: workload reduction. I think one reason Oracle doesn't
focus on workload reduction in its wait events reference is that the wait events reference appears in the chapter
entitled "Instance Tuning." I think that in a chapter with such a name, an author feels constrained to limit his
discussions to "tuning" activities that don't require application modifications.

You and I, however, live under no such restrictions. Even if you're using a third-party application that you cannot
change without vendor participation, you still need to keep your mind open to the performance enhancement
opportunities made possible by workload reduction. Of course, eliminating wasteful workload can sometimes call for
application modification. Don't despair, however. It is often not as difficult as you might think to convince an
application software vendor to improve the performance of a packaged application.

A great benefit of using Method R is that no matter what the cause of a user action's performance problem, you'll find
it. Will it be bad news to learn that your application vendor made a terrible design mistake that will prohibit your
happiness until it is fixed? It may be. But if the truth is that the only path to good performance is through your
application vendor, you need to learn that fact as quickly as possible, so that you'll stop wasting resources on activities
that are destined to fail.

Each of the following sections augments the wait event references you'll find at Oracle Corporation web sites and
elsewhere on the Internet. Each section describes a few ways to eliminate wasteful workload and how the waste at
issue can show up as components of user action response time.

11.3.1 Logical I/O Optimization

Much of the data manipulation performed upon an Oracle database takes place in the database buffer cache region of
the Oracle kernel's collection of shared memory segments called the system global area. Therefore, all performance
analysts pay attention to what goes on in the database buffer cache. The Oracle kernel reportedly uses hundreds of
different code paths to access buffers in the database buffer cache [Lewis (2003)]. The most expensive of those buffer
visits are called Oracle logical I/O (LIO) operations. A database call's LIO count is the sum of its cr and cu statistic
values from SQL trace data.

At virtually every Oracle site I've ever visited, more than 50% of the total CPU capacity consumed by Oracle
applications has been wasted on unnecessary LIO calls. In many cases, well over 90% of a system's total capacity
usage can be eliminated with no loss of useful function whatsoever to the business.

Your best chance of convincing an application software vendor to improve the
performance of your purchased application is to provide irrefutable quantitative evidence
that your performance improvement suggestions will help their product make you—and
your vendor's other customers—happier.

Excessive buffer visits are the morbid obesity of the database. Just like carrying around an
extra twenty pounds of body fat hurts virtually every subsystem in a human body
(circulatory, renal, musculoskeletal, ocular...), extra LIO calls can degrade the
performance of virtually every subsystem in an Oracle application.

Page 1 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Visiting too many buffers consumes unnecessary CPU service and causes time spent not executing that can show up
in large unaccounted-for durations. Unnecessary LIO operations cause latch free waits for cache buffers chains latches,
and it motivates unnecessary OS read calls that show up as db file sequential read or db file scattered read.

Many Oracle wait events are capable of revealing harmful performance side effects of unnecessary buffer visits. For
example, everybody's performance degrades as CPU run queues grow longer. Oracle's log file sync wait event is one of
the first events to show increased latencies due to the time a process spends waiting in a CPU run queue. Negative
effects of excessive buffer visits show up in places you might never have expected. For example, when unnecessary
buffer visits motivate unnecessarily intense competition for disk I/O, DBWR writes can queue behind read requests.
When DBWR fails to keep pace with the buffer change rate, applications become susceptible to waits for free buffer
waits, write complete waits, and even log file switch (checkpoint incomplete) events. The origin of buffer busy waits problems
can often be traced back to an excessive number of LIO operations. Mistakes that lead to unnecessary LIO operations
can even cause unnecessary SQL*Net message from client event executions.

11.3.1.1 Why LIO problems are so common

There are several reasons that so many systems suffer from excessive LIO processing. One reason is that we're all
taught early and often that memory accesses are a lot faster than disk accesses, with the implication that lots of
memory accesses are nothing really to worry about [Millsap (2001c)]. A deeper reason that so many Oracle
applications suffer from excessive LIO processing is that there are so many ways that people can cause the problem.
Here is a small sample:

Application users

There are several ways that application users can cause an application to make unnecessary buffer visits. They
can run unconstrained queries instead of filtered queries; for example, they can search for the vendor named
"Xerox" by performing a blind query instead of specifying X% as a constraint on the name. They can run
reports without appropriate arguments; for example, they can run the accidental "whole company's sales since
inception" report instead of the intended "this month's sales for my department" report. Especially when
systems slow down because of other LIO excesses, users can resubmit the same job several times, resulting in
an execution of the same LIOs several times.

Application administrators

Application administrators can make mistakes that result in unnecessary buffer visits, too. In configurable
applications, like the Oracle e-Business Suite, charts of accounts configuration and setup decisions can make a
tremendous difference in the LIO counts generated by common business functions. Some applications, like the
Oracle General Ledger product, have their own query optimization features built in. Using features like these
without careful consideration of their performance impact can cause lots of unnecessary LIO calls. Application
administrators that do a poor job of data archiving and purging can inflict millions of unnecessary LIO calls
upon an application.

Instance administrators

Instance administrator mistakes that can cause unnecessary LIO processing include making poor choices for
the dozens of instance parameters like HASH_AREA_SIZE and DB_FILE_MULTIBLOCK_READ_COUNT that
influence the operation of the Oracle cost-based query optimizer.

Data administrators

Data administrators can cause unnecessary LIO processing in an immense number of ways. Perhaps the most
common is to provide poor quality information about tables and indexes to the Oracle cost-based query

Page 2 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

optimizer (CBO) by botching the statistics gathering process. Tables afflicted with severe row migration or
row chaining problems consume more LIO processing than necessary. Tables with poorly planned PCTFREE
and PCTUSED values can drive unnecessary LIOs. Failing to use index-organized tables, clusters, and
partitions in the right situations can result in unnecessary LIOs. Failing to declare constraints (like which
columns are primary or foreign key columns, and which columns are NULL-able and which are not) can
prevent the Oracle query optimizer from using reduced-LIO execution plans. Of course, having too few
indexes—or simply the wrong indexes—can cause unnecessary LIO operations for queries, and having too
many indexes can cause unnecessary LIOs for INSERT, UPDATE, and DELETE statements.

Application developers

Applications development decisions of course have immense impact upon LIO counts. Several types of SQL
design mistakes make it impossible for the Oracle kernel to use efficient query execution plans. For example,
using a WHERE clause predicate like TRUNC(START_DATE) = TO_DATE(:b1,'mm/dd/rr') might prevent an Oracle
kernel process from using an index upon START_DATE that might have provided excellent LIO count
reduction. Application code can use perfect SQL and still execute too many LIO calls. For example, an
application coded to fetch one row at a time from an Oracle cursor can execute a hundred times more LIO
calls than the same application designed to use the Oracle array fetch mechanism to fetch 100 rows in a single
LIO call. Neglecting to use Oracle's array features puts extra load not just on the database, but also on the
network; the extra database calls required to process larger numbers of smaller row sets produce more SQL*Net
message from client event executions, which contribute quickly to user action response times.

Application data designers

Application designers can also make it impossible to build an efficient, low-LIO application. One inventory
tracking application that Jeff worked on a few years ago made it impossible to determine the location of an
inventory item without constructing the entire history of where the item had been. Instead of a quick indexed
"where is it?" lookup, the application required a complicated and long-running CONNECT BY query.

With so many people in the mix who have to do their jobs well to prevent LIO problems, it's no wonder that most
sites generate excessive LIO calls.

11.3.1.2 How to optimize SQL

Optimizing inefficient SQL is easily the most important performance repair tactic that you'll need as an Oracle
performance analyst. If a database call motivates more than about ten LIO calls per row returned per table listed in the
FROM clause of the SQL text motivating the call, then the SQL statement's efficiency can probably be improved. For
example, a three-table join operation that returns two rows should probably require fewer than about 60 LIO calls.

Applications executing SQL resulting in large numbers of LIO calls create massive scalability barriers for systems
with large user counts. Not only do unnecessary LIO calls motivate excessive CPU capacity consumption, they often
drive large numbers of latch free waits for cache buffers chains latches [Millsap (2001c)]. Attempted latch acquisitions in
and of themselves can cause excessive CPU capacity consumption, especially in environments where analysts have
increased the value of _SPIN_COUNT beyond its default value (as a general rule, don't).

There are several good resources available today that explain how to optimize SQL: [Ensor and Stevenson (1997a,
1997b); Harrison (2000); Lewis (2001b, 2002); Kyte (2001); Adams (2003); Lawson (2003); Holt et al. (2003)].[2]
Contributors to various mailing lists like Oracle-L (http://www.cybcon.com/~jkstill) do an excellent job of helping list
users write efficient SQL. Each of these sources includes good advice about how to write efficient SQL using

Any ratio is unreliable in certain circumstances. One such circumstance for this ratio
occurs when a query's result set is the result of an aggregation. For example, a query
returning a sum (one row) from a million-row table will legitimately require more than ten
LIO calls.

Page 3 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

methods including (but by no means restricted to) the following:

[2] I'm also eager to see the new SQL optimization book that Dan Tow (http://www.singingsql.com) is reportedly writing as I finish this
book.

� Diagnosing the behavior of SQL statement executions with tools like tkprof, EXPLAIN PLAN, and debugging
events like 10032, 10033, 10046, 10079, 10104, and 10241.

� Diagnosing the behavior of the Oracle query optimizer using debugging events like 10053.

� Manipulating SQL text to permit the use of more efficient execution plans.

� Defining an efficient index strategy to aid in better data reduction for queries without producing excessive
overhead for INSERT, UPDATE, MERGE, and DELETE operations.

� Using the stored outlines feature to force the Oracle query optimizer to use the plan of your choosing.

� Creating appropriate table, index, and database statistics to better inform the Oracle query optimizer about
your data.

� Designing physical data models that facilitate the storage and retrieval operations your application requires.

� Designing logical data models that facilitate the storage and retrieval operations your application requires.

11.3.2 Parse Optimization

Excessive parsing is a sure-fire way to ensure that an application will never scale to large user counts [Holt and
Millsap (2000)]. The general sentiment that students seem to bring to our classrooms is that hard parses are huge
scalability inhibitors for transaction processing systems, but "soft parses" are okay. More to the point, perhaps people
believe that hard parses are avoidable, but "soft parses" are not. Both sentences are only half true. Hard parses are as
awful as people expect, and you can avoid them by using bind variables instead of literal values in your application
SQL. However, so-called soft parses are awful in their own right, and you can avoid more of them than you might
have thought.

Many authors use the term "soft parse" as a synonym for "parse call." I prefer the term "parse call," because it focuses
your attention upon the application, where you can actually implement a remedy action. Using the term "soft parse"
seems to draw people's focus to the database, which is not the stack layer where you can fix the problem. Here's why.
Any time an Oracle kernel process receives a parse call from an application, that kernel process must consume CPU
capacity on the database server. If the kernel finds an appropriately sharable cursor for the query either in the session
cursor cache or the Oracle library cache, then the parse call never motivates a hard parse, and the parse call ends up
being cheaper than it might have been. However, even cheaper than a soft parse is no parse. Applications scale best to
large user counts when they parse as infrequently as possible. You should strive to eliminate unnecessary parse calls
whenever you can.

On high concurrency systems with unnecessarily high parse call counts, large CPU service numbers often correlate
with large numbers of latch free waits for library cache, shared pool, and other latches. Attempted latch acquisitions in

In fact, applications scale best when they make the smallest number of database calls that
they can. The evolution of the Oracle Call Interface (OCI) reflects this goal. For example,
the release 8 OCI reduces client-server round trips in a number of clever ways
(http://otn.oracle.com/tech/oci/htdocs/Developing_apps.html). The release 9.2 OCI goes
even further to prevent many database calls in the application from ever even reaching the
database (http://otn.oracle.com/tech/oci/htdocs/oci9ir2_new_features).

Page 4 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

and of themselves can cause excessive CPU capacity consumption, especially in environments where analysts have
increased the value of _SPIN_COUNT (again, as a general rule, don't). Furthermore, excessive parse calls cause
unnecessary SQL*Net message from client latencies, which can add up to several seconds of response time waste for
every second of actual work done inside the database. Finally, parse calls that use long SQL texts create unnecessary
SQL*Net more data from client latencies, which can also add up to big response time numbers.

If your performance problem is caused by large numbers of parse calls, then consider the following workload
reduction strategies:

� Don't use string literals in SQL WHERE clauses. Use bind variables (placeholders) instead, especially when the
literal string has high cardinality (that is, when the literal string has many possible values). Using string literals
instead of bind variables consumes CPU service and, on high concurrency systems, it causes unnecessary latch
free waits for shared pool, library cache, and row cache object latches.

� Extract parse calls from within loops so that an application can reuse the cursor prepared by a single parse call
many times. The pseudocode of Example 11-2 shows how.

Example 11-2. Parsing inside of a loop creates a dreadful scalability inhibitor

BAD, unscalable application code
for each v in (897248, 897249, ...) {
 c = parse("select ... where orderid = ".v);
 execute(c);
 data = fetch(c);
 close_cursor(c);
}

GOOD, scalable application code
c = parse("select ... where orderid = :v1");
for each v in (897248, 897249, ...) {
 execute(c, v);
 data = fetch(c);
}
close_cursor(c);

� Deactivate application-to-database driver features that motivate more parse database calls than are apparent in
the application source code. For example, the Perl DBI provides a prepare-level attribute called ora_check_sql
whose default value of 1 motivates two parse calls per Perl prepare function call. The first parse call is
performed to help the application SQL developer more quickly debug his application source code by providing
more detailed diagnostic information in response to failed parse calls. However, on production systems, this
feature should be deactivated because it motivates unnecessary parse calls.

� Use a multi-tier application architecture in which each application service parses all of its SQL statements
exactly one time and then reuses cursors for the duration of its uptime.

� Don't send long SQL text stings in parse calls. Use stored procedure calls instead. Sending long SQL text
strings in parse calls consumes unnecessary CPU service consumption on the server—even when they use bind
variables. Even when the SQL text is completely shareable, the Oracle kernel must validate object permissions
each time it receives a SQL text string from a new user ID (when the kernel receives a stored procedure call,
the procedure executes in its owner's context, so the permissions on objects inside the package need to be
checked only once—if the application developer doesn't specify the use of the invoker's rights) [Adams (2003)
371-372]. Passing long SQL text strings also causes unnecessary network load, which manifests as SQL*Net
more data from client latency for the Oracle kernel process making the parse call, and as longer SQL*Net message
from client latencies for everyone else.

� Reduce the application's use of public synonyms if you have an extraordinarily large number of object
references [Adams (2003) 373-375]. Search www.google.com with site:www.ixora.com.au "public synonym" for
additional information.

Page 5 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

11.3.3 Write Optimization

The design of the Oracle kernel centralizes its writing tasks nicely into a small set of specialized background
processes. The processes that do most of Oracle's write operations are DBWR, LGWR, and ARCH. Most databases
do far more reading than they do writing. However, many systems have important service level agreements on
business functions that require high-performance writing, and even on systems where writing takes a back seat to
reading, slow writes can mess up performance for reads in indirect ways. For example, the poor performance behavior
of a slow DBWR process can show up as free buffer waits events in query response times. Excessive write operations
can queue at storage devices ahead of legitimate read requests, resulting in degraded db file sequential read, db file
scattered read, or direct path read performance.

There are several ways that workload optimization can improve DBWR, LGWR, and ARCH write performance. The
most commonly required optimization is actually to eliminate unnecessary LIO operations (see Section 11.3.1).
Unnecessary LIO operations can motivate unnecessary OS read calls, which can queue ahead of DBWR writes, which
can inspire longer-than-expected write latencies on db file single write and db file parallel write operations executed by a
DBWR process.

Next, you should ensure that all the writes your application does are truly necessary. There are lots of sneaky ways
that an application can generate more writes than it really needs to. For example:

� The Oracle kernel generates redo and undo for every index block that is changed by an INSERT, UPDATE, or
DELETE statement, so the presence of unnecessary indexes can generate lots of unnecessary undo in transaction
processing systems. For example, an insert into a table with three indexes generates roughly ten times more
workload than an insert into an unindexed table [Ensor and Stevenson (1997a), 147].

� Some applications generate unnecessary undo by updating columns to the same value they already had. For
example, in a SQL statement that sets a status flag from N to Y based on some set of conditions, make sure that
your WHERE clause includes a predicate that specifies AND STATUS='N'. Automatic application generators often
update columns to values they already had. They do it when they generate an UPDATE statement that updates
every column that has a value shown on the current screen. Instead of updating all the columns with on-screen
values, they should update only the columns that the user has changed.

� Application users and database administrators can execute table and index operations that use the LOGGING
designation by default, but that could have been performed just as well with the NOLOGGING designation. (The
keywords LOGGING and NOLOGGING replace the deprecated keywords RECOVERABLE and UNRECOVERABLE.)

Your system configuration decisions influence the amount of workload your system must endure, too. For example,
RAID level 5 disk configurations are particularly vulnerable to write-induced waiting. Every write performed by an
Oracle DBWR process is a single-block write, which RAID level 5 handles very inefficiently unless it has been
configured with a sufficient amount of cache. When sustained write rates overwhelm the storage capacity of the
cache, the performance of a RAID level 5 disk group degrades to roughly four times worse than the array's expected
operational throughput. Your best solution is to eliminate enough wasted workload that your sustained I/O rate to the
device drops to a suitable level. Failing that, you can choose one of the following courses of action:

� Increase the size of the cache (which will only defer the problem, but perhaps you can defer it long enough to
suit your application for the duration of its peak I/O load).

� Increase the number of RAID level 5 disk groups dedicated to servicing your database application's read and
write requests.

Using NOLOGGING is not a good idea if you actually want an operation to be recoverable.
For example, you don't want to use NOLOGGING operations on a database that participates
in a hot standby architecture. Oracle9i provides a FORCE LOGGING mode to stop
developers from successfully using the NOLOGGING option.

Page 6 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-11-SECT-3

� Reconfigure your disks into a different RAID organization that allows you to achieve higher I/O throughput
rates without the need to buy additional memory or disks. For example, use striping and mirroring.

Page 7 of 7O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 11. Responding to the Diagnosis

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-11-SECT-4

11.4 Attributes of a Scalable Application

Building scalable applications is hard work. It's a lot harder than anything that fits in just one or two pages can solve.
But by now, I'm sure you have noticed a couple of ideas about Oracle performance that I consider axiomatic:

1. Most systems have plenty of hardware dedicated to them; they are slow because of waste.

2. Eliminating that waste is much more economically efficient than trying to cover up the problem by adding
more capacity to the system.

I therefore submit that building fast, scalable applications requires adherence to a kind of Golden Rule of Application
Design:

Don't design your application to do anything that isn't absolutely necessary.

It sounds horribly lazy, in direct violation of the sound work ethics that our good fathers and mothers have taught us.
But doing things an application doesn't need to do is exactly what makes it slow, unscalable (which is different from
slow [Millsap (2001a)]), and—in the end—economically inefficient. The following few bits of advice bring some
concreteness to this Golden Rule:

1. Don't run reports that nobody reads.

2. Don't generate more output than you need.

3. Don't execute a business process any more often than the business needs.

4. Don't write SQL that visits more blocks in the database buffer cache than necessary.

5. Don't update a column's value to the same value it already has.

6. Push data when it's ready instead of forcing applications to poll to see if there's any work to do.

7. Don't generate redo and undo when you don't need the recoverability benefits provided by generating it.

8. Don't parse any SQL statement that you could have pre-parsed and shared.

9. Don't process DML one row at a time; use array fetches, bulk inserts, etc.

10. Don't lock data any more often or for any longer than is absolutely necessary.

While I won't pretend that the list is complete, I do believe that it should help you get into the spirit of understanding
what an appropriately lean application should look like.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part III: Deployment

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-12

Chapter 12. Case Studies

If you've read the whole book to this point, then, conceptually, you're ready to do performance improvement projects
in a whole new way. However, being "conceptually ready" to do something and actually committing yourself to the
experience of doing it are two completely different things. Because the new Method R contradicts convention, it can
be especially difficult to commit to using it. Virtually every book, paper, newsletter, web page, software tool,
consultant, colleague, and friend who has ever occupied your attention before this book has given you advice about
"tuning" that radically contradicts what I'm telling you to do here. In an attempt to convince you to try Method R, this
chapter contains some examples to show you how it works in practice. My hope is that by showing you how my
colleagues and I respond to some patterns that we commonly see in our optimization work, you'll imagine more
vividly how Method R can work for you.

Think of learning Method R in the same way that you learned to speak your native language. You began by observing
other people performing the act you were trying to learn. Specifically, you did not learn how to speak as a child by
studying syntax diagrams and declension tables. If you studied those things at all, you did so after you had gained
significant familiarity with the language. Your teachers probably forced you to study them in school. Your
educational system's motive for exposing you to the underlying rules of the language was to enable you to subject
your use of language to a more formal analysis that would help you communicate more effectively later in life.

I want to help you learn Method R in a similar way. In the following sections, I present a few examples of common
Oracle performance improvement projects that you can follow from beginning to end. My plan is that by studying
these examples, you'll quickly notice the emergence of key behavior patterns that you'll be able to copy in situations
that differ from my examples. If you evolve more deeply into Oracle performance improvement as a specialty, then
you'll need the syntax rules and declension tables that I provide in Part II.

The case studies in this chapter derive from a variety of sources, including:

� Hotsos Profiler customers who have submitted trace files to www.hotsos.com for analysis

� Hotsos Clinic students who have brought a trace file to class for live, in-class analysis

� Client visits performed by Hotsos performance specialists

� Questions and answers appearing on public news groups

All the examples are real. I do not reveal the source of each case, nor do I identify the people involved, but every case
described in this chapter came to us as a legitimate pain that had, until submission to Method R, evaded solution. As
you will see as you gain experience with the method, correct use of Method R leads inevitably to one of two
conclusions:

� You find the root cause of a performance problem, and you're able to determine how much performance
improvement you should expect.

� Or, you become able to prove that improving performance for the user action under analysis is not
economically justifiable.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 12. Case Studies

12.1 Case 1: Misled by System-Wide Data

After several months of trying to arrange a sales call into a local account in Dallas, our www.hotsos.com sales staff
finally got a phone call on a Monday. The people with whom we'd been trying to arrange a visit had finally reached
their wits' end with a performance problem, and they were going to give us a shot at fixing it. So on Wednesday, we
got our chance.

The scenario was similar to ones we had seen before. The company had been fighting a performance problem with a
particular program's response time for several months. All of the in-house experts had given the problem their shot
over those months. None of their attempts had resulted in any appreciable performance gains. They had finally
reached the level of frustration with the problem that management had decided to invest a large chunk of cash into
fixing the problem. So on the weekend prior to our phone call, the company upgraded their system's CPUs. The
upgrade process went successfully, and of course everyone was excited—perhaps a bit nervous—to see the
improvement on Monday.

To their horror, the performance of the slow program was actually worse after the very expensive upgrade. Not just
"seemed worse," was worse; measurably worse. So, on Monday we got a phone call. Our invitation said, "Come in
and show us what you can do." Two days later, we got in our car and drove across town. This is what we found:

� The company used the Oracle Payroll product. It was configured in a conventional way, with batch jobs
running on the database server, and dozens of browser-based users scattered throughout the building on a local
area network (LAN).

� PYUGEN program performance had been hurting the business for several months. When we arrived, the
PYUGEN program—a batch job—was able to process about 27 assignments per minute. Targeted performance
was twice this throughput.

� The customer used an internationally renowned, full-featured performance monitoring tool that queried data
from fixed views like V$SYSTEM_EVENT and V$LATCH. This tool showed that the system's bottleneck was
waits for the Oracle latch free wait event. The vast majority of latch free waits were waits for cache buffers
chains latches.

� The customer understood correctly that contention for cache buffers chains latches was a likely indication of
inefficient (that is, high-LIO) SQL. However, the customer's application developers had analyzed the PYUGEN
program and found no way to reduce the SQL's LIO count.

� A recent upgrade of all twelve of the system's CPUs from 700 MHz to 1 GHz had made PYUGEN performance
measurably worse. Failure of the CPU upgrade to improve performance was the "final straw" motivating the
customer to invite www.hotsos.com staff to come onsite.

12.1.1 Targeting

By the time we arrived onsite, the customer had already completed the user action targeting step by identifying
PYUGEN as the system's more important performance problem. Thus, our first step with the customer was to begin the
collection of properly scoped diagnostic data. At this customer, collecting Oracle extended SQL trace data was
straightforward because user action response time consisted exclusively of PYUGEN program execution. We used our
free tool called Sparky (http://www.hotsos.com) to manage the extended SQL trace activation and deactivation.

The execution that we traced consumed slightly more than half an hour, producing roughly 70 MB of extended trace
data. After the program completed, we executed the Hotsos Profiler upon the data, producing the resource profile

Page 1 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

shown in Example 12-1.

Example 12-1. Resource profile for an Oracle Payroll program

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
SQL*Net message from client 984.0s 49.6% 95,161 0.010340s
SQL*Net more data from client 418.8s 21.1% 3,345 0.125208s
db file sequential read 279.3s 14.1% 45,084 0.006196s
CPU service 248.7s 12.5% 222,760 0.001116s
unaccounted-for 27.9s 1.4%
latch free 23.7s 1.2% 34,695 0.000683s
log file sync 1.1s 0.1% 506 0.002154s
SQL*Net more data to client 0.8s 0.0% 15,982 0.000052s
log file switch completion 0.3s 0.0% 3 0.093333s
enqueue 0.3s 0.0% 106 0.002358s
buffer busy waits 0.2s 0.0% 67 0.003284s
SQL*Net message to client 0.2s 0.0% 95,161 0.000003s
db file scattered read 0.0s 0.0% 2 0.005000s
SQL*Net break/reset to client 0.0s 0.0% 2 0.000000s
----------------------------- ----------------- -------------- ------------
Total 1,985.3s 100.0%

The data in the resource profile came as a surprise to everyone who had worked on the project for the past few
months. From the resource profile alone, we could already determine beyond the shadow of a doubt that waits for latch
free were virtually irrelevant in their influence over total PYUGEN response time. If the company had been completely
successful in eliminating latch free waits from their system, it would have made only about a 1% difference in the
runtime of this program.

Actually, the V$SYSTEM_EVENT view had indicated clearly that the top wait event was SQL*Net message from client, but
of course every good Oracle performance analyst knows that you have to discard all the SQL*Net events because they
are "idle" events.

Roughly 50% of the total PYUGEN response time was consumed by executions of read system calls to the SQL*Net
mechanism. The occurrence of SQL*Net message from client events at the top of the resource profile motivated a quick
re-check of the collected data to ensure that the prominence of this between-calls event was not the result of data
collection error. It wasn't. The SQL*Net message from client events and their durations were distributed uniformly
throughout the trace file. These wait events were the results of thousands of database calls. When you add in the effect
of the other SQL*Net event, SQL*Net more data from client, we had discovered the cause for over 70% of PYUGEN's total
response time.

12.1.2 Diagnosis and Response

You of course cannot ignore 70% of a program's response time, even if people do call the motivating events "idle."
Idle or not, this time was part of someone's response time, so we needed to deal with it. If we hadn't collected our
statistics so carefully (with proper time scope and proper program scope), then we would have seen probably much
more SQL*Net message from client time in our data. If you make that particular collection error, then you must disregard
the so-called idle wait time.

The top line of the resource profile was naturally the symptom we investigated first. Because this was a prepackaged
application, we expected that the number of database calls would be difficult for us to manipulate, so we let our
attention wander to the duration-per-call column. Here, we found a number that looked suspiciously LAN-like (on the
order of 0.010 seconds, as described in Chapter 10), not IPC-like (on the order of 0.001 seconds or less). So we
reconfirmed that the PYUGEN batch program had indeed run on the database server host (with the PYUGEN process's

This kind of thing happens frequently in our field work: you can not detect many types of
user action performance problems by examining system-wide data. The data from
V$SYSTEM_EVENT was true; it was just irrelevant to the problem at hand. You cannot
extrapolate detail for a specific session from aggregated system-wide data.

Page 2 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

corresponding Oracle kernel process) by checking the V$SESSION data collected automatically by Sparky upon
collection activation (Example 12-2).

Example 12-2. The data that Sparky obtained from V$SESSION verified that the PYUGEN process was in fact
running on the same host as its Oracle kernel process

 Oracle instance = prod (8.1.6.3.0)
 host = dalunix150.xyz.com (OSF1 V5.1)
 program = PYUGEN@dalunix150.xyz.com (TNS V1-V2) (session 611)
 trace file = /prod/u001/app/oracle/admin/prod/udump/ora_922341.trc
 line count = 1,760,351 (0 ignored, 0 oracle error)
 t0 = Wed Sep 12 2001 14:10:27 (388941433)
 t1 = Wed Sep 12 2001 14:43:32 (389139973)
 interval duration = 1,985.40s
 transactions = 672 (672 commits, 0 rollbacks)

Sure enough, the hostname reported to the right of the @ character in V$SESSION exactly matched the Node name
reported in the preamble of the SQL trace file. PYUGEN had definitely run on the same host as the database server. So
why would the PYUGEN program suffer from such large SQL*Net message from client latencies? We examined the
system's tnsnames.ora file to find out. It turns out that to conserve system administration effort, the system's managers
had decided to use a single TNS alias system-wide. The batch jobs were using the same TCP/IP protocol adapter as
the system's browser clients were using.

It was easy to devise a strategy that was perfectly acceptable in terms of system administrative overhead. We could
add a second alias to the existing tnsnames.ora file. The second alias would be identical to the existing alias except
that it would have a different name, and it would use the syntax (PROTOCOL=BEQ) instead of (PROTOCOL=TCP). The
customer would shut down the Oracle Applications Concurrent Manager and restart it, specifying the new alias that
used the bequeath protocol adapter. The new tnsnames.ora file could be pushed out to everyone on the system
without side effect. Everyone except for the person who started the Concurrent Manager would use the same TNS
alias as before.

Before implementing this change, the customer ran a simple test. He executed and timed a SELECT statement that
would require a few thousand database calls from a SQL*Plus session executed on the database server itself. He ran it
once through a session established with the old alias that used the TCP/IP protocol adapter. He then ran the statement
again through a session established with the new alias that used the bequeath protocol adapter. The test showed that
using the bequeath protocol adapter reduced SQL*Net message from client latencies to less than 0.001 seconds. We could
expect to eliminate at least 40% of the program's total response time by executing this one change alone, as shown in
Figure 12-1.

Figure 12-1. We could expect that reducing the per-call latency of SQL*Net message from client events from
0.010 seconds to 0.001 seconds would eliminate more than 40% of PYUGEN's response time

Page 3 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

We actually had reason to expect better than a 40% improvement. The second most important contributor to PYUGEN
response time was another SQL*Net event called SQL*Net more data from client. The cause of this event was a sequence
of parse calls that passed excessively long SQL text strings through SQL*Net from the client to the server (instead of
using stored procedure calls to accomplish the same thing). The long SQL text strings wouldn't fit into a single
SQL*Net packet, so the Oracle kernel spent a considerable amount of time awaiting second and subsequent SQL*Net
packets during parse calls. Of course, because Oracle Payroll was a prepackaged application, our short-term hopes for
reducing the number of executions of this event were dim. However, we had reason to believe that because some of
the SQL*Net more data from client latency was network transport, the protocol adapter change would improve the
performance of this event's executions as well.

12.1.3 Results

The bottom-line results were excellent. Payroll processing performance improved from executing 27 assignments per
minute to 61 assignments per minute. The proposed tnsnames.ora change took 15 minutes to test and about a week to
navigate through change control. Our whole engagement at the client lasted less than four hours. Of this time, two
hours were consumed installing Sparky (which required a Perl upgrade on the database server host), and a little more
than half an hour was consumed by letting the PYUGEN program run with a level-8 extended SQL trace turned on. The
remaining hour and a half contained the whole meeting, greeting, analysis, testing, and recap activities.

Oh yes... Why did the Payroll program get slower after the CPU upgrade? Not much Payroll program time was spent
consuming CPU service, so the upgrade had very little direct positive effect upon PYUGEN. Most of the program's
time was spent queueing for the network. Other programs ran at the same time as this Payroll job. The CPU upgrade
made them faster, which intensified their number of network calls (which remained unchanged after the upgrade) into
a smaller time window. The result was increased competition for the network during the Payroll run. Therefore, every
network I/O call the Payroll program made was a little slower than before the CPU upgrade. The degradation in
network response time overwhelmed the small direct improvement of the CPU time reduction, resulting in a net
degradation of Payroll performance...not a good thing, because this Payroll program had a higher business priority
than everything else on the system.

12.1.4 Lessons Learned

This case is a classic illustration of the following important points:

� Don't let your V$ data tell you what your system's problem is. Your business should decide that. The real
performance problem in your system is whatever it is that is causing response time problems for your

Page 4 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-12-SECT-1

business's most important user action.

� You can't extrapolate detail from an aggregate. You cannot necessarily determine what's wrong with an
individual program by examining only the system-wide statistics for an instance.

� Capacity upgrades are a riskier performance improvement activity than many people think. Not only can they
waste a lot of money by being ineffective, they can actually degrade performance for the very programs you're
trying to improve.

� It's nearly impossible to find and repair your performance problems by executing the old trial-and-error
approach. There are just too many things that might be your performance problem. Instead of checking
everything that might be causing your performance problem, it's easy enough to simply ask your targeted user
actions what is causing your performance problem.

Page 5 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 12. Case Studies

12.2 Case 2: Large CPU Service Duration

One of our first www.hotsos.com customers was an Oracle Financial and Manufacturing Applications site. The
customer was experiencing poor response times in several different programs—some stock, some custom. This
customer engaged us not to fix performance problems, but to teach their staff how to do it. Job one was to teach the
customer's new performance analyst how to collect and use good diagnostic data. Job two was to hack our own pre-
beta Sparky and Hotsos Profiler software into usable shape so the customer could use it after we had gone home. It
was a nice experience for us. The new performance analyst was an applications administrator and had never actually
done much performance improvement work before this project.

Over the course of a couple of months, our contact with the new performance analyst dwindled from daily phone calls
to weekly emails. One day we received a call just to say hello and to brag a little bit about one of his day's
accomplishments. This is the story of that accomplishment.

12.2.1 Targeting

Over the previous few weeks, our friend had done an excellent job of working down his company's list of targeted
slow user actions. He described that he had actually gotten to the point where the conspicuous absence of performance
complaints had left him with more free time at work than he was accustomed to having. So, with some of his free
time, he had decided to investigate why a particular batch job had always taken so long. (Remember, the new
performance analyst had worked closely with the applications before this performance improvement project, so he
knew first-hand how long this thing took.) So he traced the program. Example 12-3 shows the resource profile for the
trace file.

Example 12-3. Resource profile for Oracle Purchasing program

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
CPU service 1,527.5s 60.8% 158,257 0.009652s
db file sequential read 432.0s 17.2% 62,495 0.006913s
unaccounted-for 209.6s 8.3%
global cache lock s to x 99.9s 4.0% 3,434 0.029083s
global cache lock open s 85.9s 3.4% 3,507 0.024502s
global cache lock open x 57.9s 2.3% 1,930 0.029990s
latch free 26.8s 1.1% 1,010 0.026505s
SQL*Net message from client 19.1s 0.8% 6,714 0.002846s
write complete waits 11.1s 0.4% 155 0.071806s
enqueue 11.1s 0.4% 330 0.033606s
row cache lock 11.1s 0.4% 485 0.022887s
log file switch completion 7.3s 0.3% 15 0.487333s
log file sync 3.3s 0.1% 39 0.084872s
wait for DLM latch 3.0s 0.1% 91 0.032418s
global cache lock busy 1.5s 0.1% 11 0.139091s
DFS lock handle 1.4s 0.1% 43 0.032558s
global cache lock null to x 0.9s 0.0% 8 0.112500s
rdbms ipc reply 0.6s 0.0% 7 0.081429s
global cache lock null to s 0.4s 0.0% 7 0.060000s
library cache pin 0.1s 0.0% 7 0.015714s
SQL*Net message to client 0.0s 0.0% 6,714 0.000003s
file open 0.0s 0.0% 13 0.000000s
SQL*Net more data from client 0.0s 0.0% 2 0.000000s
----------------------------- ----------------- -------------- ------------
Total 2,510.5s 100.0%

As you can see, CPU service and database file reading dominate the profile with almost 80% of the total response
time. Roughly 10% more of the response time is consumed by global cache lock operations required by Oracle
Parallel Server, and the final 10% was distributed over a few percentage points of unaccounted-for time and lots of

Page 1 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

inconsequential events.

There's no way by looking only at the resource profile to determine whether the CPU service consumption shown here
is excessive, but to make a material impact upon the almost 42-minute response time will certainly require a reduction
of the duration of the CPU service component. The first question you answer in a case like this is, "Which SQL is
responsible for this CPU service consumption?" The Hotsos Profiler makes this task particularly easy, by providing a
section in its output that lists the top five SQL statements that contribute to each response time component, as shown
in Example 12-4.

Example 12-4. The Hotsos Profiler identifies the contribution to CPU service duration by SQL statement

SQL Statement Id Duration
------------------ ------------------
704365403 1,066.4s 69.8%
3277176312 371.9s 24.3%
1107640601 8.5s 0.6%
3705838826 6.5s 0.4%
529440951 6.0s 0.4%
111 others 68.7s 4.5%
------------------ ------------------
Total 1,527.5s 100.0%

Two SQL statements completely dominate the session's consumption of CPU capacity. In the Hotsos Profiler output,
each statement ID is a hyperlink that takes you to the data shown in Example 12-5. With Oracle's tkprof utility, you
can accomplish the task by specifying the sort order sort=prscpu,execpu,fchcpu. With this sort order, the SQL statement
that you're searching for will then show up at the top of the output.

Example 12-5. SQL text and performance statistics for statement 704365403, the top contributor to the
session's CPU service consumption

Statement Text
update po_requisitions_interface set requisition_header_id=:b0
where (req_number_segment1=:b1 and request_id=:b2)

Statement Cumulative Database Call Statistics
Cursor Action ------ Response Time ------- LIO PIO
Action Count Rows Elapsed CPU Other Blocks Blocks
------- ------ ------ --------- --------- -------- ---------- ----------
Parse 0 0 0.0 0.0 0.0 0 0
Execute 1,166 0 1,455.0 1,066.4 388.6 8,216,887 3,547
Fetch 0 0 0.0 0.0 0.0 0 0
------- ------ ------ --------- --------- -------- ---------- ----------
Total 1,166 0 1,455.0 1,066.4 388.6 8,216,887 3,547

Per Exe 1 0 1.3 0.9 0.3 7,047 3
Per Row 1,166 1 1,455.0 1,066.4 388.6 8,216,887 3,547

The information in Example 12-5 is quite revealing. Here are some interesting observations:

� The statement that contributes the most CPU time to the session's response time is a very simple UPDATE that
is executed 1,166 times.

� However, 1,166 executions of this UPDATE statement never processed a single row.

� Each execution required an average of 7,047 LIO operations (that's 8,216,887 LIOs divided by 1,166
executions) to determine that no rows matched the statement's simple WHERE clause predicate.

� The database buffer cache hit ratio for this statement is very "good." It is:

Page 2 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Ironically, one of the reasons that this statement never percolated to the top priority for the system's
performance analysts may have been that its cache hit ratio was so good, the system's performance monitoring
tools regarded the statement as exemplary.

12.2.2 Diagnosis and Response

In Chapter 11, I describe a simple rule of thumb about LIO call counts: if a SQL statement requires more than about
ten LIO operations per row returned per table in the FROM clause, then the statement is probably doing too many
LIOs. Well, this UPDATE statement isn't a query with a FROM clause, but nevertheless, it does execute much of the
same Oracle kernel code path as would the following query:

select requisition_header_id=:b0
from po_requisitions_interface
where (req_number_segment1=:b1 and request_id=:b2)

How many LIOs should be required to determine that this query returns no rows? My estimation is fewer than ten.
Here's why: if a composite index existed upon the two columns REQ_NUMBER_SEGMENT1 and REQUEST_ID, then the
Oracle kernel should be able to determine that the query returns no rows by simply plunging the index from root to
leaf. The number of LIO operations required to execute this plunge is the height of the index. The height of an index
is its BLEVEL value (for example, from DBA_INDEXES, for index segments you have analyzed) plus one. The most
enormous indexes I've ever heard of have heights of seven or less. Therefore, you should expect with a composite
index upon REQ_NUMBER_SEGMENT1 and REQUEST_ID, the number of LIO operations per executions will be seven or
less.

Remember, a database call's CPU consumption is usually proportional to the number of LIO operations it performs.
Therefore, if you can reduce a call's number of LIO operations from 7,047 to just 7, then you can expect to reduce the
database call's total CPU consumption by a similar factor of 1,000. You can thus expect for the LIO reduction to
cause a total CPU consumption reduction for executions of this UPDATE statement from 1,066.4 seconds to roughly 1
second. This expected improvement of roughly 1,000 seconds is a big enough chunk of response time reduction that
it's worth testing the result at this point. The recommended performance improvement activity is to create a composite
index upon the two columns REQ_NUMBER_SEGMENT1 and REQUEST_ID.

12.2.3 Results

The total program response time actually dropped by far more than the 1,000-second savings that I forecast. The
overachievement came from collateral benefits, including:

� The second largest SQL contributor to the session's CPU service consumption, statement 3277176312, used
the exact same WHERE clause as statement 704365403 used. The index creation thus had a tremendous
performance improving effect upon both of the top contributors to the session's total response time.

� LIO reduction reduces total session workload, not just in the CPU service category, but in other categories as
well. Notably, if you can eliminate many of a session's database buffer visits, then you will usually eliminate
many of the session's motives for performing disk read operations as well. Eliminating LIO operations almost
always produces the collateral benefit of reduced PIO call counts as well. Reducing LIO call count can reduce
waits for global cache lock... events, latch free events, and others as well.

Creating a new index also creates the risk of collateral damage, however. In this case, the risk of query damage was
minimized because the base table was an interface table that was referenced by only a few SQL statements in the
application. To be completely thorough when you create a new index (or drop an old one), you should re-check all of
your application's execution plans to ensure that any plan changes introduced by the schema change are not harmful.

Page 3 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-12-SECT-2

(The Project Laredo tool described at http://www.hotsos.com is one way to accomplish this.)

12.2.4 Lessons Learned

This case highlights several important ideas:

� SQL optimization is often simpler than you might expect. The key is in knowing which SQL you need to
optimize.

� The collateral benefit of LIO call reduction is extremely powerful.

� Creating or dropping an index provides opportunity for both collateral benefit and collateral damage.
Mitigating your risk requires analysis of all the potential execution plan changes that the index manipulation
might inspire.

� A SQL statement's database buffer cache hit ratio is not a valid measure of its efficiency.

Page 4 of 4O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 12. Case Studies

12.3 Case 3: Large SQL*Net Event Duration

This case came to us in the final segment of a Hotsos Clinic. The game is that another instructor and I lecture for two
and a half days, and then at the end of the course, we offer to open up people's trace files and try to diagnose them in a
public forum. The theory is that we're brave enough to try to diagnose the trace file of anyone who is brave enough to
show off their slow applications in public. It's great fun. The students get to see whether the techniques we've been
talking about actually work in reality, and they get to practice their new ideas by shouting them out in the classroom.
The submitter usually gets a serious problem fixed. And we get to see lots of very interesting application performance
problems.

In this class, a very nice young lady who had sat at the back of the class handed us a CD on the final day of the
course. The trace file on this disk, she explained, was the trace file from a purchased application built with
PowerBuilder that had been slow for as long as she could remember. In fact, the company across the street used the
same application and was having severe performance problems with it as well. At every local user group meeting, her
story continued, she and the other users would routinely ask each other whether anyone had yet figured out how make
this thing run faster. Nobody had figured out why it was so slow.

No pressure.

12.3.1 Targeting

It seemed like an excellent opportunity to demonstrate the power of Method R—how great of a setup is a performance
problem that people have looked at for years without solving it. It was an opportunity straight out of the first few
paragraphs of Chapter 1!

My heart sank when we looked at the resource profile for the file. What we saw is in Example 12-6: lots of SQL*Net
message from client, and not really much else. The first sentence out of my mouth expressed my disappointment that we
might not be able to help as much as we would like to, because this resource profile apparently included a lot of user
think time, or time spent in a probably un-instrumented application server tier, or something like that.

Example 12-6. Resource profiler for an application written in PowerBuilder

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
SQL*Net message from client 166.6s 91.8% 6,094 0.027338s
CPU service 9.7s 5.3% 18,750 0.000515s
unaccounted-for 1.9s 1.1%
db file sequential read 1.6s 0.9% 1,740 0.000914s
log file sync 1.1s 0.6% 681 0.001645s
SQL*Net more data from client 0.3s 0.1% 71 0.003521s
SQL*Net more data to client 0.1s 0.1% 108 0.001019s
free buffer waits 0.1s 0.0% 4 0.022500s
db file scattered read 0.0s 0.0% 34 0.001176s
SQL*Net message to client 0.0s 0.0% 6,094 0.000007s
log file switch completion 0.0s 0.0% 1 0.030000s
latch free 0.0s 0.0% 1 0.010000s
log buffer space 0.0s 0.0% 2 0.005000s
direct path read 0.0s 0.0% 5 0.000000s
direct path write 0.0s 0.0% 2 0.000000s
----------------------------- ----------------- -------------- ------------
Total 181.5s 100.0%

No, she asserted, she had in fact been awake for the duration of the course. She sincerely and patiently explained that
she knew what collection error and think time were, and this trace file didn't have any. She had begun the extended
SQL trace data collection immediately before a user clicked an OK button to initiate an online action, and she had

Page 1 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

stopped the data collection immediately after she had noticed that the system had returned the result, by having the
user disconnect from the application. The user had actually waited about three minutes from button click to
disconnect. This was a two-tier application, with no application middle tier and consequently no un-instrumented
application server code. And furthermore, she had used our Sparky tool to collect the data.

Oh.

I had missed a clue, actually. In addition to the average duration per call information, our actual Hotsos Profiler output
shows the minimum and maximum single wait time for each event. (It's too much information for me to show in the
limited page width allowed for Example 12-6.) The longest wait for a SQL*Net message from client event had been on
the order of a few seconds. And of course, the call count (# Calls in Example 12-6), had I paid more attention to it, was
actually a big clue that this wasn't a collection error or a think time problem.

At the time, I really wasn't certain of how to attack the problem, so, with Jeff's lead, we starting looking through our
Hotsos Profiler output. Using the principle of forward attribution as our guide (Chapter 11), we looked for database
calls that followed the SQL*Net message from client events. Hotsos have since modified the code so that this type of
problem is very easy to solve within just a couple of minutes. I'll describe the diagnostic process in terms of an
analysis that would take place today with the improved Hotsos Profiler.

12.3.2 Diagnosis and Response

To tie up any possible loose ends, we examined the SQL*Net message from client time a little more closely. Example 12-
6 doesn't show it, because the pages of this book aren't wide enough, but the Hotsos Profiler output showed that the
maximum SQL*Net message from client execution duration was 17.43 seconds. A quick search in the raw trace file for
the string ela= 1743 (notice the blank space that the Oracle kernel emits between the = and the 1), revealed that there
was actually a bit of collection error at the tail of the file. Sitting between two XCTEND lines was a SQL*Net message
from client execution with an ela value of 17.43 seconds. The first commit had been the end of the user action. The
second commit occurred when the user disconnected from the application. It had taken the ladies a few seconds to
notice that the action had completed. After correcting for this little bit of collection error, the resource profile for the
user action is the one shown in Example 12-7.

Example 12-7. The resource profile from Example 12-6, after correcting for a 17.43-second collection error

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
SQL*Net message from client 149.2s 91.0% 6,093 0.024482s
CPU service 9.7s 5.9% 18,750 0.000515s
unaccounted-for 1.9s 1.2%
db file sequential read 1.6s 1.0% 1,740 0.000914s
log file sync 1.1s 0.7% 681 0.001645s
SQL*Net more data from client 0.3s 0.2% 71 0.003521s
SQL*Net more data to client 0.1s 0.1% 108 0.001019s
free buffer waits 0.1s 0.1% 4 0.022500s
db file scattered read 0.0s 0.0% 34 0.001176s
SQL*Net message to client 0.0s 0.0% 6,094 0.000007s
log file switch completion 0.0s 0.0% 1 0.030000s
latch free 0.0s 0.0% 1 0.010000s
log buffer space 0.0s 0.0% 2 0.005000s
direct path read 0.0s 0.0% 5 0.000000s
direct path write 0.0s 0.0% 2 0.000000s
----------------------------- ----------------- -------------- ------------
Total 164.0s 100.0%

The next question to answer in this situation is, "Which SQL is responsible for the remaining SQL*Net message from
client duration?" The Hotsos Profiler output provides the answer automatically, as shown in Example 12-8.[1]

[1] Unfortunately tkprof and Trace File Analyzer provide no help on this type of problem. However, using the principal of forward
attribution, you can find the top contributing statements by searching the raw trace data.

Example 12-8. The Hotsos Profiler identifies the contribution to SQL*Net message from client duration by
SQL statement

Page 2 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

SQL Statement Id Duration
------------------ ------------------
1525010069 23.1s 15.5%
2038166283 18.7s 12.5%
1966856986 17.6s 11.8%
1547563725 13.9s 9.3%
3230460720 10.8s 7.2%
77 others 65.1s 43.6%
------------------ ------------------
Total 149.2s 100.0%

From the percentages shown in the Example 12-8 list of SQL statements, you can see that no single SQL statement
accounts for a disproportionately large part of the SQL*Net message from client contribution. Therefore, to make a big
impact upon the reduction of message from client time, it will actually be necessary in this case to look at more than
just one SQL statement. However, we began by looking at the first one, whose statement text and statement statistics
are shown in Example 12-9.

Example 12-9. SQL text and performance statistics for statement 1525010069, the top contributor to the
session's SQL*Net message from client duration

Statement Text
INSERT INTO STAGING_AREA (
 DOC_OBJ_ID, TRADE_NAME_ID, LANGUAGE_CODE, OBJECT_RESULT, GRAPHIC_FLAG,
 USER_LAST_UPDT, TMSP_LAST_UPDT
) VALUES (
 1000346, 54213, 'ENGLISH', '<BLANK>', 'N', 'sa',
 TO_DATE('11/05/2001 16:40:54', 'MM/DD/YYYY HH24:MI:SS')
)

Statement Cumulative Database Call Statistics
Cursor Action ------ Response Time ------- LIO PIO
Action Count Rows Elapsed CPU Other Blocks Blocks
------- ------ ------ --------- --------- -------- ---------- ----------
Parse 696 0 0.9 0.8 0.1 0 0
Execute 348 348 1.7 1.6 0.0 5,251 351
Fetch 0 0 0.0 0.0 0.0 0 0
------- ------ ------ --------- --------- -------- ---------- ----------
Total 1,044 348 2.6 2.4 0.1 5,251 351

Per Exe 1 1 0.0 0.0 0.0 15 1
Per Row 1 1 0.0 0.0 0.0 15 1

Though I've not shown it in the output here, the Hotsos Profiler revealed that there were 347 "similar" statements in
the trace file. The Profiler defines two SQL statements as similar if and only if the statements are identical (as
regarded by the Oracle kernel) except for literal string values in the statements. Oracle's tkprof would not have
aggregated the unshared SQL statements this way; instead, it would have listed all 348 distinct SQL texts as each
consuming a very small amount of capacity. This, of course, makes analysis a bit more difficult, but all the
information you need to determine that the statements should have been sharable is present in the SQL trace file.

The data in Example 12-9 make it clear why there were so many distinct SQL texts. The statement uses several string
literals instead of placeholder ("bind") variables:

1000346
54213
'ENGLISH'
'<BLANK>'
'N'
'sa'
'11/05/2001 16:40:54'

The value that sticks out immediately as completely unsharable is the date value in the final variable position. This
value corresponds to a column called TMSP_LAST_UPDT—the timestamp of the last update. How many times would
you expect for an application to ever reuse the exact SQL text that contains a hard-coded timestamp value with one-
second resolution?

Page 3 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Right, you would expect the answer to be zero, but actually there's a little twist to the answer. This particular
application reused the statement exactly once (that is, the application used this statement twice in total). Notice the
action count for parses and executions of this statement (and its similar statements): the 348 statements accounted for
a total of 696 parse calls and 348 executions. That's right, it accounted for exactly twice as many parses as executions!
In Section 11.3.2, I admonish you to extract parse calls from within loops so that an application can reuse the cursor
prepared by a single parse call many times. The Hotsos Profiler output shows (it's not shown in Example 12-9) that
for the 696 parse calls, there are 348 misses on the library cache (from the mis statistic of the raw trace data). What's
happening here is that, incredibly, this application actually parses each of these SQL statements twice for each execute
call, as shown in Example 12-10.

Example 12-10. An application that parses twice for every execution...a really bad idea

REALLY BAD, unscalable application code
for each v in (897248, 897249, ...) {
 c = parse("select ... where orderid = ".v); # just ignore the result
 c = parse("select ... where orderid = ".v); # do the same parse again
 execute(c);
 data = fetch(c);
 close_cursor(c);
}

The first parse call for each statement results in a library cache miss (a "hard" parse), and the second parse call for
each statement results in a library cache hit (a "soft" parse).

At this point, it's important to remember our overall goal. Executions of the SQL*Net message from client wait event
dominate user action response time. Example 12-7 shows that this user action executes a total of 6,093 such events,
for a total response time contribution of 149.2 seconds, each consuming an average of 0.024482 seconds per call.
SQL*Net message from client is a wait event that the Oracle kernel executes between database calls. Therefore,
eliminating database calls will eliminate some response time attributable to SQL*Net message from client events.
Happily, we had just found an opportunity to eliminate 348 parse calls. Simply find a way to stop parsing twice for
every execute call. The expected savings: about 8.5 seconds for the session (about 5% of the session's total response
time).

Not a huge start, but we're not done yet. As I mention in Chapter 11, by extracting a parse call from within a loop, the
student should be able to eliminate all but one parse call. Using bind variables and making the code look like the
scalable application code shown in Example 10-2 will result in the elimination of 695 unnecessary parse calls.
Expected total impact to our student's user action: about 17 seconds, or about 10% of total session response time.

We wondered how many other SQL statements might be suffering from the same problems as the first one we
examined? By visiting the detailed statistics for all the SQL statements in the Hotsos Profiler output, we found that
over 3,000 total database calls should be candidates for elimination. Expected total impact to the user action: over 73
seconds, or about 45% of the session's total response time.

But even that's not all. Remember, the user clicked OK once and then waited over 180 seconds for a result, with no
opportunity for further input provided to the application. But look again at Example 12-9. It is a single-row INSERT
statement, executed 348 times, manipulating a grand total of 348 rows. Why would the application need to make 348
database calls to insert 348 rows? Oracle provides an array insert function that might reduce the number of insert
statements from 348 to perhaps 4 (if the application could use an array size of 100 rows). If this database call
reduction could be implemented, it would reduce the session's total database call count further by more than 650 calls.
Expected additional impact to the user action: about 16 seconds, for 10% more of the session's total response time.

If all the proposed database call eliminations could be implemented, the total savings would amount to the elimination
of more than 3,650 calls, for a grand total of roughly 89 seconds saved, or a 54% reduction in response time. If the
database calls could be eliminated, the user could expect a response time improvement from 164 seconds to about 75
seconds. It is possible that if a lot of users run applications like this one simultaneously, then a lot of the network
subsystem's capacity is eaten up by wasted database calls. If this is the case, then eliminating those wasteful calls
might reduce network queueing delays so that the 0.024-second latency of SQL*Net message from client events might
actually drop to about 0.015 seconds. If this were to happen, then the approximately 2,400 SQL*Net message from client
events that remain after optimization might consume only about 37 seconds, which would represent a grand total of
about 110 seconds' worth of response time reduction.

Page 4 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-12-SECT-3

12.3.3 Results

When we assess trace files in class, we don't always get to see the end result of our recommendations. This case is one
such example. Because the user action in question was part of a packaged application, the three manipulations that we
suggested require vendor participation. The student did pass our suggestions to the vendor:

� Don't execute each parse call twice, to cut the number of parse calls for many cursors in half.

� Use bind variables and extract parse calls from loops to reduce the number of parse calls further to one per
cursor.

� Reduce overall database calls counts by using array processing instead of processing only one row at a time.

While I write this chapter, the student and I are still waiting to see what might happen. Her company is planning to
upgrade to the vendor's next release shortly after this book goes to print. We'll keep you posted on the Web.

12.3.4 Lessons Learned

This case highlights the following important ideas:

� You can't just ignore SQL*Net message from client wait events. When they contribute significantly to the
response time of a properly targeted user action, you have to pay attention to them.

� Too many database calls can ruin your performance, even when your SQL is just fine. In this case, the SQL
might have in fact been wasteful. But fixing it before fixing the problem with too many database calls would
have produced unnoticeably small results.

Page 5 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 12. Case Studies

12.4 Case 4: Large Read Event Duration

Regularly, we get nice letters from people who are interested in letting us know that our method and tools are helping.
This case is the result of one such letter from a friend in Iceland who reduced the response time of a query from 6.5
hours to 10.9 seconds—and fixed a previously undiscovered functional bug—by adding four bytes to its SQL text.
This is the story of how Method R helped him identify the SQL statement that was causing the problem. In the end, he
improved the response time of an important batch job from nearly eight hours to just one hour.

12.4.1 Targeting

Application targeting in this case was typical. The system owner was a bank. One of the application's batch jobs was
taking so long to run that it was unable to finish in its assigned batch window. The job started at 11:00 p.m. each
night, and it would sometimes run until noon the next day. The bank was limiting the number of accounts to update so
that the batch job would finish before opening hours. So our friend targeted this batch job for the collection of
extended SQL trace data. Example 12-11 shows the resource profile for a run that consumed nearly eight hours of run
time.

Example 12-11. Resource profile for a batch job that consumed almost eight hours

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
db file scattered read 19,051.1s 68.4% 1,828,249 0.010420s
CPU service 6,889.3s 24.7% 959,148 0.007183s
db file sequential read 1,892.7s 6.8% 406,417 0.004657s
latch free 29.0s 0.1% 1,071 0.027106s
log file switch completion 1.6s 0.0% 14 0.112143s
SQL*Net message from client 0.3s 0.0% 10 0.034000s
log buffer space 0.1s 0.0% 1 0.100000s
log file sync 0.1s 0.0% 4 0.022500s
file open 0.1s 0.0% 54 0.001296s
buffer busy waits 0.0s 0.0% 14 0.002143s
undo segment extension 0.0s 0.0% 2,111 0.000014s
SQL*Net message to client 0.0s 0.0% 10 0.000000s
----------------------------- ----------------- -------------- ------------
Total 27,864.4s 100.0%

The top lines of Example 12-11 bear the distinct signature of inefficient SQL: lots of file reading and CPU capacity
consumption. The next task is to determine which SQL statements are consuming so many resources. In this case,
executing tkprof with the option sort=prsdsk,exedsk,fchdsk will produce a report with the SQL having the largest
number of PIO blocks at the top.

The analyst in this story knew which SQL statement contributed the most to the db file scattered read problem, because
he used the Hotsos Profiler contribution table shown in Example 12-12.

Example 12-12. The Hotsos Profiler identifies the contribution to db file scattered read duration by SQL
statement

Notice, however, that basing your tkprof sort order upon the PIO block count is not the
same thing as sorting by total PIO call duration. What you really want is statements sorted
by total I/O call duration, but tkprof does not provide this information unless you're using
the 9i version. Therefore, when you use tkprof, you have to examine your output visually
to make sure you have identified the SQL statement that you really want to analyze.

Page 1 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

SQL Statement Id Duration
------------------ ------------------
1163242303 19,028.9s 99.9%
1626975503 6.7s 0.0%
808413641 5.2s 0.0%
3187134541 3.7s 0.0%
1594054818 2.4s 0.0%
8 others 4.3s 0.0%

Total 19,051.1s 100.0%

12.4.2 Diagnosis and Repair

The hunt thus progressed quickly to the performance analysis of the SQL statement 1163242303 (this is the
statement's hv value in the PARSING IN CURSOR section of the raw trace data). Example 12-13 shows the text and
performance statistics for this statement.

Example 12-13. SQL text and performance statistics for statement 1163242303, the top contributor to the
session's db file scattered read duration

Statement Text
SELECT EIGANDI,INNLENT_ERLENT,VERDTRYGGING,SKULDFLOKKUN,VBRTEGUND,FLOKKUR
FROM V_SKULDABREF_AVOXTUN
WHERE EIGANDI = :b1
AND INNLENT_ERLENT = :b2
AND ((RAFVAETT = :b3)
OR ((RAFVAETT = :b4)
AND (INNLAUSN IS NULL
OR INNLAUSN > :b5)
AND (VIDMIDDAGS <= :b6)))
GROUP BY EIGANDI,INNLENT_ERLENT,VERDTRYGGING,SKULDFLOKKUN,VBRTEGUND,FLOKKUR
ORDER BY EIGANDI,INNLENT_ERLENT,VERDTRYGGING,SKULDFLOKKUN,VBRTEGUND,FLOKKUR

Statement Cumulative Database Call Statistics
Cursor Action ------ Response Time ------- LIO PIO
Action Count Rows Elapsed CPU Other Blocks Blocks
------- ------ ------ --------- --------- -------- ---------- ----------
Parse 3,739 0 1.9 0.7 1.2 147 17
Execute 3,739 0 1.7 1.6 0.2 0 0
Fetch 4,212 473 23,466.4 4,135.6 19,330.8 36,566,201 36,550,345
------- ------ ------ --------- --------- -------- ---------- ----------
Total 11,690 473 23,470.0 4,137.9 19,332.1 36,566,348 36,550,452

Per Exe 1 0 6.3 1.1 5.2 9,780 9,092
Per Row 8 1 49.6 8.8 40.9 77,307 71,868

The SQL text for this statement is not too difficult to understand. In spite of the Icelandic object names, the statement
is simply a query from a single object. There's apparently not even a join. However, the statement's execution plan
obtained from the trace file's STAT lines and shown in Example 12-14 reveal a different story.

Something a little more complicated than a simple one-table query is going on here. In fact,
V_SKULDABREF_AVOXTUN is a view. The raw trace file confirms it. The parse call for the SELECT shown in Example
12-13 required a recursive parse, execute, and fetch calls against VIEW$, in the same manner as the query from
DBA_OBJECTS that I describe in Chapter 5. The definition of the view V_SKULDABREF_AVOXTUN becomes the next
target of our attention. One thing that an Oracle extended SQL trace file does not contain is the definition of each
view accessed by SQL identified within the trace file. However, because the trace file makes it clear that
V_SKULDABREF_AVOXTUN is a view, it's a simple enough matter to query DBA_VIEWS to determine the definition.
Example 12-15 shows that definition.

Example 12-14. The execution plan for the time-consuming SELECT statement before optimization

Note that hv is only almost unique (that is, hv is not unique). Two different SQL
statements can share the same hv value. You won't see it very often, but it can happen.

Page 2 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

 Rows Row Source Operation (Object Id)
--------------- --
 473 SORT ORDER BY
 473 SORT GROUP BY
 974 VIEW V_SKULDABREF_AVOXTUN
 974 SORT UNIQUE
 974 UNION-ALL
 686 HASH JOIN
 886 TABLE ACCESS FULL SKULDABREF_AVOXTUN(21435)
 103,247 TABLE ACCESS FULL VBR_FLOKKAR(19409)
 288 FILTER
 288 HASH JOIN
 940 TABLE ACCESS BY INDEX ROWID BREF(19460)
 2,649 INDEX RANGE SCAN(20593)
 10,744 TABLE ACCESS FULL VBR_FLOKKAR(19409)

Example 12-15. The definition of the view behind the performance problem

CREATE OR REPLACE VIEW v_skuldabref_avoxtun (
 eigandi,
 innlent_erlent,
 verdtrygging,
 skuldflokkun,
 vbrtegund,
 flokkur,
 rafvaett,
 ostadladur,
 brefnumer,
 vidmiddags,
 innlausn,
 nafnverd,
 kaupkrafa,
 ees,
 vextir)
AS
select
 s.eigandi,
 s.innlent_erlent,
 s.verdtrygging,
 s.skuldflokkun,
 s.vbrtegund,
 s.flokkur,
 'N' rafvaett,
 nvl(f.ostadlad,'N') ostadladur,
 s.brefnumer,
 s.vidmiddags,
 s.innlausn,
 s.nafnverd,
 s.kaupkrafa,
 s.ees,
 null vextir
from fjastofn.vbr_flokkar f,
 fja_pfm.skuldabref_avoxtun s
where f.audkenni=s.flokkur and
 f.rafvaett is null
union
select
 s.eig eigandi,
 'I',
 Fja_pfm.Ymis_Foll.TegundTryggingar(f.visitala) verdtrygging,
 f.skuldaranumer skuldflokkun,
 f.vbrtegund vbrtegund,
 s.aud flokkur,
 'J' rafvaett,
 'N' ostadladur,
 'x' brefnumer,
 to_date(null) vidmiddags,
 to_date(null) innlausn,
 s.nav nafnverd,
 0 kaupkrafa,
 '+' ees,
 null vextir
from fjastofn.vbr_flokkar f,
 fja_pfm.bref s

Page 3 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

where f.audkenni=s.aud and
 f.rafvaett is not null
/

The analyst discussed the view definition with a developer who understood its business purpose. From that
discussion, the analyst and developer were able to prove that the view definition was flawed. Using a UNION of the
two SELECT statements in the view definition instead of a UNION ALL was causing two problems:

� It caused a very costly but unneeded SORT UNIQUE row source operation. (The new data that the Oracle release
9.2 kernel emits in the STAT lines would better highlight the enormous cost.)

� It caused a bug as well, because the UNION erroneously eliminated rows that the application users needed.

Example 12-16 shows the execution plan of the statement shown in Example 12-13 after the view definition was
corrected by inserting the bytes ALL into the view definition.

Example 12-16. The execution plan for the time-consuming SELECT statement after optimizing the view
definition

 Rows Row Source Operation (Object Id)
--------------- --
 473 SORT ORDER BY
 473 SORT GROUP BY
 974 VIEW V_SKULDABREF_AVOXTUN
 974 UNION-ALL
 686 HASH JOIN
 886 INDEX RANGE SCAN(21436)
 103,314 TABLE ACCESS FULL VBR_FLOKKAR(19409)
 288 FILTER
 288 HASH JOIN
 940 INDEX RANGE SCAN(29887)
 10,744 TABLE ACCESS FULL VBR_FLOKKAR(19409)

Example 12-17 shows the more exciting news. The query that had previously consumed 23,470.0 seconds of response
time now consumes only 10.9 seconds. It produces the same (actually better) application output; it just consumes
about 6.5 fewer hours to do it.

Example 12-17. SQL text and performance statistics for statement 1163242303, after the view definition
change. Note that this is the same SQL text as shown in Example 12-13; only the underlying view definition has
changed. Total time reduction for the statement: from over 23,000 seconds to just over 10 seconds

Statement Text
SELECT EIGANDI,INNLENT_ERLENT,VERDTRYGGING,SKULDFLOKKUN,VBRTEGUND,FLOKKUR
FROM V_SKULDABREF_AVOXTUN
WHERE EIGANDI = :b1
AND INNLENT_ERLENT = :b2
AND ((RAFVAETT = :b3)
OR ((RAFVAETT = :b4)
AND (INNLAUSN IS NULL
OR INNLAUSN > :b5)
AND (VIDMIDDAGS <= :b6)))
GROUP BY EIGANDI,INNLENT_ERLENT,VERDTRYGGING,SKULDFLOKKUN,VBRTEGUND,FLOKKUR
ORDER BY EIGANDI,INNLENT_ERLENT,VERDTRYGGING,SKULDFLOKKUN,VBRTEGUND,FLOKKUR

Statement Cumulative Database Call Statistics
Cursor Action ------ Response Time ------- LIO PIO
Action Count Rows Elapsed CPU Other Blocks Blocks
------- ------ ------ --------- --------- -------- ---------- ----------
Parse 3,722 0 2.0 0.6 1.4 44 1
Execute 3,722 0 1.3 1.4 -0.1 14 0
Fetch 4,195 473 7.6 2.8 4.8 44,764 792
------- ------ ------ --------- --------- -------- ---------- ----------
Total 11,639 473 10.9 4.8 6.2 44,822 793

Per Exe 1 0 0.0 0.0 0.0 12 0
Per Row 8 1 0.0 0.0 0.0 95 2

Page 4 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-12-SECT-4

12.4.3 Results

The results were stunning. Example 12-18 shows the resource profile for the job after optimization. Total response
time for the eight-hour batch job dropped to slightly more than one hour.

Example 12-18. Resource profile for the same batch job that consumed almost eight hours (compare Example
12-11). After optimization, the job consumed only slightly more than one hour

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
CPU service 2,684.7s 73.9% 953,452 0.002816s
db file sequential read 847.6s 23.3% 77,944 0.010874s
unaccounted-for 93.2s 2.6%
db file scattered read 5.8s 0.2% 295 0.019627s
log file switch completion 1.6s 0.0% 7 0.234286s
latch free 1.0s 0.0% 362 0.002873s
file open 0.1s 0.0% 49 0.002041s
log file sync 0.1s 0.0% 7 0.011429s
buffer busy waits 0.0s 0.0% 1 0.010000s
SQL*Net message from client 0.0s 0.0% 10 0.001000s
SQL*Net message to client 0.0s 0.0% 10 0.000000s
----------------------------- ----------------- -------------- ------------
Total 3,634.1s 100.0%

Before correcting the view definition for V_SKULDABREF_AVOXTUN, the bank had restricted the number of accounts
upon which they would allow the job to run. Otherwise, the job's execution would violate the morning's online
window by several hours. After making the correction, they can feed virtually any parameters they want to the query
and it will not take considerably longer to run. Since optimization, the batch job has never even gotten close to the
eight-hour runtime that the "before" job required.

12.4.4 Lessons Learned

This case illustrates the following points:

� The resource profile pattern of large db file... and CPU service durations usually indicates the use of inefficient
SQL somewhere within the user action. To fix the problem, you have to find that SQL.

� The extended SQL trace file contained exactly the information that the analyst needed to optimize the
targeting process for finding the root cause of his batch job's performance problem. Even though the view
definition was not present in the trace data, the trace file contained information that focused our attention upon
the view definition as the source of the performance problem.

� Sometimes, the scrutiny of performance analysis exposes functional bugs. In this case, the performance
analyst was able to determine that not only was a specific query doing more work than it should have, it was
actually returning an incomplete result set in some circumstances.

Page 5 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Chapter 12. Case Studies

URL http://safari.oreilly.com/059600527X/optoraclep-CHP-12-SECT-5

12.5 Conclusion

When I departed Oracle Corporation in 1999 to create this business called www.hotsos.com, I wasn't actually very
good at Oracle performance optimization. I had the idea that at one point in history I had been, but it turns out that
even that wasn't really true. But in the four years that have elapsed since beginning this company, I think I've gotten
better. I've had the luxury of learning through what I believe to be the two most powerful learning tools available
within the human experience:

Immersion

I've been able to commit to immersing myself in the domain of Oracle performance optimization. For four
years, learning, doing, and teaching Oracle performance optimization have been the focus of my professional
life.

Copying good examples

I've had the opportunity to learn from Jeff Holt and the many ladies and gentlemen that I've listed in the
Preface of this book.

The immersion decision is of course your own. But I sincerely hope that you'll find this new book a helpful source of
good ideas and good examples that you can copy in your day-to-day professional lives to remove performance pain
faster and more completely than you've ever experienced.

Thank you for reading this book. I hope it will help you.

Page 1 of 1O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part IV: Appendixes

Glossary

Amdahl's law

A vital insight recognized by Gene Amdahl [Amdahl (1967)], which allows a performance analyst to compute
the relevance of various proposed performance improvements:

The performance enhancement possible with a given improvement is limited by the fraction of
the execution time that the improved feature is used.

Arrival rate (λλλλ)

The rate of arrivals into a queueing system per unit of time during a specified time interval.

Chi-square goodness-of-fit test

A statistical test that is useful in determining whether a data sample is sufficiently likely to belong to a
specified distribution.

Clock interrupt

An interrupt that notifies the operating system kernel that one more time interval has elapsed [Bovet and
Cesati (2001) 140].

Closed form solution

A mathematical result that can be expressed exactly in symbolic form. Contrast a mathematical result that can
be expressed only approximately in numeric form.

Code path

The computer instructions that are executed to produce a given result. Code path reduction is the process of
improving performance by eliminating code path without diminishing the functional result.

Collateral benefit

Page 1 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

An unintended positive side effect of an action. A benefit yielded serendipitously by attending to something
else.

Collateral damage

An unintended negative side effect of an action.

Completion rate (X)

The throughput of a queueing system.

Compulsive tuning disorder (CTD)

A term created by Gaja Vaidyanatha and Kirti Deshpande to describe an effect of using a performance
improvement method that has no terminating condition:

Many DBAs have gotten into the habit of tuning until they can't tune anymore. This not only
drives them (and their customers) crazy with late hours and system downtime, but also it
doesn't tend to result in much improvement in performance. We are absolutely convinced that
there is a growing number of DBAs out there who suffer from the malady of Compulsive
Tuning Disorder (CTD). [Vaidyanatha and Deshpande (2001) 8]

Concurrency

A measure of parallelism, usually used when describing the number of users and batch jobs that demand
services simultaneously.

Connection

See Oracle connection.

Connection pooling

A technique whereby a large number of user sessions share a smaller number of Oracle sessions. The
technique is designed to reduce the number of connect and disconnect database operations, resulting in better
performance for systems with very large user counts.

Coordinated Universal Time (UTC)

The international time standard. UTC is the current term for what was commonly referred to as Greenwich
Meridian Time (GMT). Zero hours UTC is midnight in Greenwich, England, which lies on the zero

Page 2 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

longitudinal meridian. Universal time is based on a 24-hour clock, therefore, afternoon hours such as 4:00 p.m.
UTC are expressed as 16:00 UTC ("sixteen hours, zero minutes"). (Source:
http://www.ghcc.msfc.nasa.gov/utc.html.)

Cost-based optimizer (CBO), Oracle cost-based queryoptimizer

A component of the Oracle kernel that computes the execution plan for a query by selecting the candidate
execution plan with the smallest expected cost. Input factors that influence the CBO include session- and
instance-level Oracle parameters, database table and index statistics, Oracle instance CPU and I/O statistics,
database schema definitions, stored outlines, SQL text, and the Oracle query cost model embedded within the
Oracle kernel code.

Cumulative distribution function (CDF)

The probability that a random variable X takes on a value that is less than or equal to a specified value x,

denoted P(X x). The CDF of response time is especially valuable in service level agreement construction
because it permits the formulation of p and r in statements of the form, "Response time of user action f will
equal r seconds or less in at least p percent of executions of f."

Database buffer cache hit ratio

The ratio (L - P)/L, where L is a count of Oracle logical I/O calls (LIO), and P is a count of Oracle physical
I/O calls (PIO). See ratio fallacy.

Database call

A subroutine in the Oracle kernel.

Data definition language (DDL) statement

A SQL statement that creates, alters, maintains, or drops a schema object, or that manipulates user privileges.

Data manipulation language (DML) statement

A SQL statement that queries, inserts, updates, deletes, or locks data.

Dynamic performance view

See fixed view.

Page 3 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Erlang, Agner Krarup (1878-1929)

A Danish mathematician who was the first person to study the problem of telephone networks. Erlang is
known as the father of queueing theory.

Event-based measurement

A measurement technique by which a process measures a phenomenon by recording a timestamp each time a
system's state changes. Contrast polling.

Expected value (E[X])

The mean (i.e., average) of a random variable.

Exponential distribution

A distribution with a probability density function of the form:

where θ is the mean of the distribution. The exponential distribution is important to queueing theorists because
interarrival times and service times in nature are often exponentially distributed. (It is equivalent to say that
arrival processes and service processes are often Poisson distributed.)

First-come, first-served (FCFS)

A queue discipline that provides the next unit of service to the earliest request in the queue, regardless of its
class of service. Also called first-in, first-out (FIFO).

Fixed view

An Oracle pseudo-table whose name begins with a prefix like V$ or GV$, which provides SQL access to
instance information stored in shared memory. Also called dynamic performance view.

Forward attribution

The method by which the duration of a WAIT #n trace file line is attributed to the first database call for cursor
#n that follows the WAIT line in the trace file. Attributing Oracle wait event durations this way helps you
accurately identify which application source code is responsible for motivating the "wait" time.

Page 4 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Frequency (clock frequency)

The number of ticks generated by a discrete clock in a given unit of time. Clock frequency is the reciprocal of
clock resolution.

Glossary

A textbook appendix in which an author works largely beyond the scrutiny of his editor to define terms in
whatever manner he believes might marginally improve reader satisfaction.

Idle event

An Oracle wait event that occurs between database calls. The word "idle" denotes that during the execution of
such an event, the Oracle kernel has completed a database call and is awaiting the next database call request.
Many analysts teach that you should ignore the appearance of idle events in your diagnostic data. However, in
properly time-scoped and action-scoped diagnostic data, idle events have as much diagnostic value as any
other event.

Instrumentation

Lines of code that are inserted into a program's source code in order to measure that program's performance.

Interarrival time (ττττ)

The duration between adjacent arrivals into a queueing system. Interarrival time is the reciprocal of arrival
rate.

Interrupt

A signal transmitted from hardware to the operating system kernel. From [Bach (1986) 16, 22]:

The Unix system allows devices such as I/O peripherals or the system clock to interrupt the
CPU asynchronously. On receipt of the interrupt, the [OS] kernel saves its current context (a
frozen image of what the process was doing), determines the cause of the interrupt, and services
the interrupt. After the kernel services the interrupt, it restores its interrupted context and
proceeds as if nothing had happened.... On Unix systems, interrupts are serviced by special
functions in the operating system kernel, which are called in the context of the currently
running process.

Interval bisection

Page 5 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

A numerical method for approximating the solution to a mathematical equation. When it is not possible to
compute a symbolic result, you must resort to numerical methods of solution, of which interval bisection is
one. The method is demonstrated in the following pseudocode:

function solve(function f, real s, real delta, real a, real b) {
 # We wish to find the value of x where f(x) = =s.
 # Return value is an interval containing x, with interval size < delta.

 # Solution is known to exist in interval [a,b] (i.e., a x b).
 # Function f must be continuous and monotonic for all x in [a,b].
 # Method terminates when x is within delta of true solution.
 f = f - s; # f = =s when f - s = =0
 if (not (f(a) < f(b))) f = -f; # ensure that f is ascending
 while (not (b - a < delta))
 if (f((a+b)/2) < 0) a = (a+b)/2; # solution is right of (a+b)/2
 else b = (a+b)/2; # solution is at or left of (a+b)/2
 return [a,b];
}

Interval timer

A digital time-keeping device that ticks in regular intervals.

Knee (ρρρρ*)

The utilization value at which the response time divided by utilization (R/ρ) achieves its minimum value. The
knee is often considered the optimal utilization for a queueing system because it simultaneously minimizes
user response time while maximizing the amount of system capacity being consumed.

Latch

A data structure used to ensure that two processes cannot execute a specified segment of Oracle kernel code at
the same time. Oracle kernel developers adhere to a simple latch acquisition protocol that prevents the code
they write from corrupting objects stored in shared memory. Oracle's latching protocol looks roughly like this
[Millsap (2001c)]:

while the latch for a desired operation is unavailable {
 wait
}
obtain the latch
perform the required operation
release the latch

Latency

A synonym for response time.

Logical I/O (LIO), Oracle logical I/O, Oracle logical read

An operation in which the Oracle kernel obtains and processes the content of an Oracle block from the Oracle

Page 6 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

database buffer cache. The code path for an Oracle LIO includes instructions to determine whether the desired
block exists in the buffer cache, to update internal data structures such as a buffer cache hash chain and an
LRU chain, to pin the block, and to decompose and filter the content of the retrieved block. Oracle LIO
operations occur in two modes: consistent and current. In consistent mode, a block may be copied (or cloned)
and the clone modified to represent the block at a given point in history. In current mode, a block is simply
obtained from the cache "as-is."

M/M/ m (or M/M/ c) queueing model

A set of mathematical formulas that can predict the performance of queueing systems that meet five very
specific criteria:

� The request interarrival time is an exponentially distributed random variable.

� The service time is an exponentially distributed random variable.

� There are m parallel service channels, all of which have identical functional and performance
characteristics, and all of which are identically capable of providing service to any arriving service
request.

� There is no restriction on queue length. No request that enters the queue exits the queue until that
request receives service.

� The queue discipline is first come, first served (FCFS). The system honors requests for service in the
order in which they are received.

Mathematica

An application software package that performs fast and accurate symbolic, numerical, and graphical
mathematical computations.

Maximum effective throughput (λλλλmax)

The maximum throughput that can be attained in a queueing system without causing the average response time
to exceed a specified user tolerance.

Measurement intrusion effect

A type of systematic error that occurs because the execution duration of a measured subroutine is different
from the execution duration of the subroutine when it is not being measured.

Method

A deterministic sequence of steps. The quality of a method can be judged by its impact, efficiency,

Page 7 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

measurability, predictive capacity, reliability, determinism, finiteness, and practicality.

Methodology

The theoretical analysis of methods. "In recent years, however, the word "methodology" has used as a
pretentious substitute for "method" in scientific and technical contexts.... The misuse of "methodology"
obscures an important conceptual distinction between the tools of scientific investigation (properly "methods")
and the principles that determine how such tools are deployed and interpreted—a distinction that the scientific
and scholarly communities, if not the wider public, should be expected to maintain." (Source: American
Heritage Dictionary of the English Language)

Microstate accounting

A name used by Sun Microsystems to describe the feature through which an operating system measures CPU
capacity consumption with event-based instrumentation instead of polling. The result is much reduced
quantization error.

Net payoff

The present value (PV) of a project's benefits minus the present value of the project's costs.

Optimize

To maximize the economic value of some target. Compare tune.

Oracle connection

From the Oracle Database Concepts Guide:

A connection is a communication pathway between a user process and an Oracle instance. A
communication pathway is established using available interprocess communication
mechanisms (on a computer that runs both the user process and Oracle) or network software
(when different computers run the database application and Oracle, and communicate through a
network).

Oracle session

From the Oracle Database Concepts Guide:

A session is a specific connection of a user to an Oracle instance through a user process.

Oracle does make a distinction between a connection (a communication pathway) and a session. You can be
connected to Oracle and not have any sessions. On the other hand, you can be connected and have many

Page 8 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

simultaneous sessions on that single connection.

Over-constrained

An attribute of a requirement that specifies conflicting constraints. For example, the following requirement is
over-constrained: "The value of x must be smaller than 0.001.... The value of x must be greater than 0.009."
More commonly, such conflicting constraints are concealed within more complicated requirements, where the
conflicts cannot be observed without significantly more analysis and, usually, expense.

Overflow error

An error that occurs when the result of an addition or multiplication operation exceeds the capacity of the
result's storage mechanism. For example, an n-bit unsigned integer variable j can represent values between 0
and 2n-1. Incrementing j when j = 2n-1 would result in assignment of j = 0.

Paging

The process of writing pages from memory to disk in response to memory demands that exceed memory
supply.

Parallel service channel

See service channel.

Physical I/O (PIO), Oracle physical I/O, Oracle physical write

An operation in which the Oracle kernel obtains one or more Oracle blocks via an operating system read call.
In most cases, a PIO call is motivated by an LIO call, but not all PIO calls are managed in the Oracle buffer
cache. Note that a PIO is not necessarily truly "physical" either, because PIO calls may be fulfilled from cache
in the operating system, the disk array, or even the disk itself.

Poisson distribution

A distribution with a probability density function of the form:

where λ is the mean of the distribution. In 1909, Agner Erlang showed that the arrival rate of phone calls in a
telephone system has a Poisson distribution. Many arrival processes and service processes in computer
systems also obey the Poisson distribution.

Page 9 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Polling

A measurement technique by which a process measures a phenomenon by checking the state of a system at
predefined, usually constant, time intervals. Also called sampling.

Present value (PV)

The present value (PV) of a cash flow is given by the following formula:

where C1 is the future cash flow, and r is the reward that investors demand for accepting delayed payment

[Brealey and Myers (1988), 12-13]. The PV formula allows you to compare the values of cash flows that will
take place at different times in the future. For example, if your expected annual rate of return is r = 0.07, then
the PV of a $10,000 project payoff expected one year from now is only $9,345.79. If you could invest
$9,345.79 today at 7% interest, then one year from now the investment would be worth $10,000.

Probability density function (pdf)

The probability that a random variable X will take on a specific value x, denoted f(x) = P(X = x). For example,
the pdf of a random variable simulating the result of the toss of a fair coin is:

Program

A sequence of computer instructions that carries out some business function.

Quantization error

The difference between an event's actual duration and the duration of that event as measured on a discrete
clock.

Queue discipline

The rules that define how service will be allocated among competing demanders. Examples of queue
disciplines are first-come, first served (FCFS); highest priority first; and sharpest elbows first.

Page 10 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Queueing delay (W)

The time consumed in a queueing system by an arriving request that is waiting to receive service from a
resource that is busy serving another request. Queueing delay is not the same thing as the ela figures that the
Oracle kernel emits in its WAIT trace data lines.

Queueing theory

A branch of mathematics that allows for the prediction of various attributes of performance, such as response
time and queueing delay.

Random variable

A function whose value is a random number. A random variable is characterized by its mean, its distribution,
and possibly other parameters such as standard deviation.

Ratio fallacy, ratio games

A deficiency inherent in any ratio that permits the performance of a system being measured to become worse
while the apparent goodness of the ratio value improves. Ratio fallacies exist because any ratio's value can be
manipulated by modifying either its numerator or its denominator. Improving a ratio's value by degrading the
value of the system being measured is called gaming the system.

For example, a consultant whose bonus is proportional to his billable utilization can game his compensation
plan by negotiating a reduction in his billable capacity. A sales representative can game his sales win ratio by
making fewer sales calls on prospects that are less likely to buy. A database administrator can game the
database buffer cache hit ratio by increasing the number of LIO calls to memory-resident blocks. Any ratio can
be gamed.

Recursive SQL

Any SQL statement that appears in Oracle SQL trace data as having a cursor with a dep value that is greater
than zero.

Reliable

The capacity of a method to produce the same degree of correctness every time it is executed. For example, a
method that produces an incorrect answer every time it is executed is reliable. A method that produces a
correct answer every time it is executed is also reliable. A method is unreliable if it sometimes produces a
correct answer and sometimes produces an incorrect answer.

Resolution (clock resolution)

Page 11 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

The elapsed duration between adjacent ticks of a discrete clock. Clock resolution is the reciprocal of clock
frequency.

Resource profile

A table revealing a useful decomposition of response time. Typically, a resource profile reveals at least the
attributes of (1) response time component, (2) total duration consumed by actions in that category, and (3) the
number of calls to actions in that category. A resource profile is often presented in descending order of elapsed
time consumption.

Response time (R), latency

The time that a system or functional unit takes to react to a given input. In a queueing system, response time
equals service time plus queueing delay.

Risk

Uncertainty about future benefits or costs. We quantify that uncertainty using probability distributions [Bodie,
et al. (1989) 112].

Round robin (RR)

A queue discipline in which processes are selected one after another so that all members of the set have an
opportunity to execute before any member has a second opportunity [Comer (1984) 56].

Rule-based optimizer (RBO), Oracle rule-based query optimizer

A component of the Oracle kernel that computes the execution plan for a query using a static precedence list
of row source operations. Input factors that influence the RBO include only the database schema
configuration, the SQL text, and the operator precedence list embedded within the Oracle kernel source code.

Sampling

See polling.

Scalability

The rate of change of response time with respect to some specified parameter. For example, one may speak of
the scalability of a query with respect to the number of rows returned, the scalability of a system with respect
to the number of CPUs installed, and so on.

Page 12 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Scheduler

An operating system subroutine that is responsible for allocating CPU cycles among competing operating
system processes.

Sequence diagram

A graphical depiction of response time in which a sequence of parallel timelines represent the resources in the
technology stack. Consumption of a given resource is represented as a region on that resource's timeline.
Supply and demand relationships among resources are represented by directed lines connecting the timelines.

Service channel, parallel service channel (m, c, or s)

A resource in a queueing system that provides service to requests arriving into the system. The number of
parallel service channels in a queueing system is denoted with the variable m in this text (as in M/M/m). It is
called c or s in some queueing theory texts (as in M/M/c).

Service level agreement (SLA)

An agreement between an information supplier and an information demander that defines expected application
performance and availability levels.

Service rate (µµµµ)

The number of arrivals that can be processed by a single channel in a queueing system within a specified unit
of time. Service rate is the reciprocal of service time.

Service time (S)

The amount of resource capacity consumed by an arriving request in a queueing system. Service time is the
reciprocal of service rate.

Session

See Oracle session.

Specification

Page 13 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

A formal written statement of a project's intended result.

SQL optimization

The process of eliminating code path in operations executed by the Oracle kernel in response to instructions
written in SQL.

Stable queueing system

A queueing system whose per-server utilization is in the range 0 ρ < 1. In a stable queueing system, the
long-term number of completions equals the long-term number of arrivals.

System

To an information provider, a system is typically regarded as a collection of processes, files, and shared
memory segments that comprise an application. To an information consumer, a system is an entity that
provides service in response to user actions. The mismatch between these two perceptions often results in
"optimizations" executed by information providers that affect the performance of important user actions either
negligibly or even negatively.

System call, sys call

A subroutine in the operating system kernel [Stevens (1992) 20].

Systematic error

The result of some experimental "mistake" that introduces a consistent bias into its measurements. Systematic
errors tend to be constant across all measurements, or slowly varying with time [Lilja (2000)].

Technology stack

A model that considers system components such as the hardware, the operating system, the database kernel,
the application software, the business rules, and the business users as layers in a stratified architecture.

Think time

Time consumed in an architectural tier that rests in a level higher in the technology stack than the one you're
analyzing.

Page 14 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Thrashing

The act of consuming an excessive amount of capacity just to administer a system's own overhead. For
example, an operating system's CPU scheduler typically consumes less than x% of a system's total CPU
capacity (on many systems today, x = 10). When the system's workload is increased so much that the CPU
scheduler consumes more than x% of capacity just to allocate CPU, the CPU scheduler is said to be thrashing.

Throughput (X)

The rate of completions of a queueing system per unit of time during a specified time interval.

Traffic intensity (ρρρρ)

The mean utilization per parallel service channel in a queueing system.

Tune

To improve the performance of some target. Compare optimize.

User action

A unit of work whose output and performance have meaning to the business, such as the entry of a field or
form, or the execution of one or more whole programs.

UTC

See Coordinated Universal Time.

Utilization

Resource usage divided by resource capacity for a specified time interval.

Waste

Anything that can be eliminated with no loss of anything useful. In the context of computer system workload,
waste is any workload that can be eliminated with no loss of functional value to the business.

Page 15 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-GLOSS

Page 16 of 16O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part IV: Appendixes

Appendix A. Greek Alphabet

The following table gives the letters of the Greek alphabet and their English equivalents. Where the English
pronunciation of a Greek letter is not obvious, the table gives an example. Thus, the Greek letter alpha is pronounced
as the "a" in father, the Greek letter êta as the "e" in hey, and so forth.

Source: http://www.ibiblio.org/koine/greek/lessons/alphabet.html

Greek letter Greek name English equivalent English pronunciation

Α α alpha a "father"

Β β beta b

Γ γ gamma g

∆ δ delta d

Ε ε epsilon e "end"

Ζ ζ zêta z

Η η êta ê "hey"

Θ θ thêta th "thick"

Ι iota i "it"

Κ κ kappa k

Λ λ lambda l

Μ µ mu m

Ν ν nu n

Ξ ξ xi ks "box"

Ο ο omikron o "off"

Π π pi p

Ρ ρ rho r

Σ σ, sigma s "say"

Τ τ tau t

Υ υ upsilon u "put"

Φ φ phi f

Χ χ chi ch "Bach"

Ψ ψ psi ps

Ω ω omega ô "grow"

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-APP-A

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part IV: Appendixes

Appendix B. Optimizing Your Database Buffer Cache Hit
Ratio

Shortly after I joined Oracle Corporation in 1989, several of my technical mentors taught me that just about the only
thing you could tell from looking at a database's buffer cache hit ratio is that when it's really high, it's usually a sign of
trouble [Millsap (2001b)]. In the several years that have passed since my first exposure to that lesson, the battle has
raged between advocates of using the buffer cache hit ratio as a primary indicator of performance quality and those
who believe that hit ratio metrics is too unreliable for such use. It's not been much of a battle, actually. The evidence
that hit ratios are unreliable is overwhelming, and similar ratio fallacies occurring in other industries are well
documented (see, for example, [Jain (1991)] and [Goldratt (1992)]).

One of the most compelling (and funniest) proofs that hit ratios are unreliable is a PL/SQL procedure called
choose_a_hit_ratio written by Connor McDonald. Connor's procedure lets you increase your database buffer cache hit
ratio to any value that you like between its current value and 99.999 999 9%. How does it work? By adding wasteful
workload to your system. That's right. You specify what you want your database buffer cache hit ratio to be, and
choose_a_hit_ratio adds just enough wasteful workload to raise your hit ratio to that value. What you get in return is
proof positive that having a high database buffer cache hit ratio is no indication that you have an efficient system. In
his original text at http://www.oracledba.co.uk, Connor thanks Jonathan Lewis for some of the strategy that he used.
And I thank Connor for his letting me use his work in this book.

You can find Connor's original PL/SQL at http://www.oracledba.co.uk. Example B-1 expresses the same idea in Perl,
which enables me to do a little bit more, like prompting and printing timing statistics on the LIO generation. You can
download the code as part of the examples for this book, from the O'Reilly catalog page:
http://www.oreilly.com/catalog/optoraclep/.

Example B-1. A Perl program that will enable you to increase your database buffer cache hit ratio to virtually
any value you want

#!/usr/bin/perl

$Header: /home/cvs/cvm-book1/set_hit_ratio/set-bchr.pl,v 1.3 2003/05/08 06:37:50 cvm Exp
$
Cary Millsap (cary.millsap@hotsos.com)
based upon the innovative work of Connor McDonald and Jonathan Lewis
Copyright (c) 2003 by Hotsos Enterprises, Ltd. All rights reserved.

use strict;
use warnings;
use Getopt::Long;
use Time::HiRes qw(gettimeofday);
use DBI;

fetch command-line options
my %opt = (
 service => "",
 username => "/",
 password => "",
 debug => 0,
);
GetOptions(
 "service=s" => \$opt{service},
 "username=s" => \$opt{username},
 "password=s" => \$opt{password},
 "debug" => \$opt{debug},
);

sub fnum($;$$) {

Page 1 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

 # return string representation of numeric value in
 # %.${precision}f format with specified separators
 my ($text, $precision, $separator) = @_;
 $precision = 0 unless defined $precision;
 $separator = "," unless defined $separator;
 $text = reverse sprintf "%.${precision}f", $text;
 $text =~ s/(\d\d\d)(?=\d)(?!\d*\.)/1separator/g;
 return scalar reverse $text;
}

sub stats($) {
 # fetch LIO and PIO stats from the given db handle
 my ($dbh) = @_;
 my $sth = $dbh->prepare(<<'END OF SQL', {ora_check_sql => 0});
select name, value from v$sysstat
where name in ('physical reads', 'db block gets', 'consistent gets')
END OF SQL
 $sth->execute();
 my $r = $sth->fetchall_hashref("NAME");
 my $pio = $r->{'physical reads' }->{VALUE};
 my $lio = $r->{'consistent gets'}->{VALUE} + $r->{'db block gets'}->{VALUE};
 if ($opt{debug}) {
 print "key='$_', val=$r->{$_}->{VALUE}\n" for (keys %$r);
 print "pio=$pio, lio=$lio\n";
 }
 return ($lio, $pio);
}

sub status($$$) {
 # print a status paragraph
 my ($description, $lio, $pio) = @_;
 print "$description\n";
 printf "%15s LIO calls\n", fnum($lio);
 printf "%15s PIO calls\n", fnum($pio);
 printf "%15.9f buffer cache hit ratio\n", ($lio - $pio) / $lio;
 print "\n";
}

fetch target hit ratio from command line
my $usage = "Usage: $0 [options] target\n\t";
my $target = shift or die $usage;
my $max_target = 0.999_999_999;
unless ($target =~ /\d*\.\d+/ and 0 <= $target and $target <= $max_target) {
 die "target must be a number between 0 and $max_target\n";
}

connect to Oracle
my %attr = (RaiseError => 0, PrintError => 0, AutoCommit => 0);
my $dbh = DBI->connect(
 "dbi:Oracle:$opt{service}", $opt{username}, $opt{password}, \%attr
);
END {
 # executed upon program exit
 $dbh->disconnect if defined $dbh;
}

compute and display the baseline statistics
my ($lio0, $pio0) = stats $dbh;
status("Current state", $lio0, $pio0);

compute and display the amount of waste required to
"improve" the cache hit ratio by the requested amount
my $waste;
if ($target < ($lio0 - $pio0)/$lio0) {
 die "Your database buffer cache hit ratio already exceeds $target.\n";
} elsif ($target > $max_target) {
 die "Setting your hit ratio to $target will take too long.\n";
} else {
 # following formula is courtesy of Connor McDonald
 $waste = sprintf "%.0f", $pio0/(1 - $target) - $lio0;
}
my ($lio1, $pio1) = ($lio0 + $waste, $pio0);
status("Increasing LIO count by ".fnum($waste)." will yield", $lio1, $pio1);

inquire whether to actually change the ratio
print <<"EOF";

Page 2 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

**
 WARNING
Responding affirmatively to the following prompt will create the
following effects:
1) It will degrade the performance of your database while it runs.
2) It might run a very long time.
3) It will "improve" your system's buffer cache hit ratio.
4) It will prove that a high database buffer cache hit ratio is
 an unreliable indicator of Oracle system performance.
**

EOF
print qq(Enter 'y' to "improve" your hit ratio to $target:);
my $response = <>;
exit unless $response =~ /^[Yy]/;
print "\n";

create a table called DUMMY
my $sth;
$sth = $dbh->prepare(<<'END OF SQL', {ora_check_sql => 0});
drop table dummy
END OF SQL
$sth->execute if $sth; # ignore errors
$sth = $dbh->prepare(<<'END OF SQL', {ora_check_sql => 0});
create table dummy (n primary key) organization index as
select rownum n from all_objects where rownum <= 200
END OF SQL
$sth->execute;

disable 9i connect-by features to ensure lots of LIO
idea is courtesy of Connor McDonald
$sth = $dbh->prepare(<<'END OF SQL', {ora_check_sql => 0});
alter session set _old_connect_by_enabled = true;
END OF SQL
$sth->execute if $sth; # ignore errors

perform the requisite number of LIO calls
following query is courtesy of Jonathan Lewis
$sth = $dbh->prepare(<<'END OF SQL', {ora_check_sql => 0});
select count(*)
from (select n from dummy connect by n > prior n start with n = 1)
where rownum < ?
END OF SQL
my $e0 = gettimeofday;
$sth->execute($waste);
my $e1 = gettimeofday;
my $e = $e1 - $e0;
$sth->finish;
printf "Performed %s LIO calls in %.6f seconds (%s LIO/sec)\n\n",
 fnum($waste), $e, fnum($waste/$e);

compute and display the final statistics
my ($lio2, $pio2) = stats($dbh);
status("Final state", $lio2, $pio2);

exit;

_ _END_ _

=head1 NAME

set-bchr - set your database buffer cache hit ratio to a higher value

=head1 SYNOPSIS

set-bchr
 [--service=I<h>]
 [--username=I<u>]
 [--password=I<p>]
 [--debug=I<d>]
 I<target>

=head1 DESCRIPTION

B<set-bchr> computes your present buffer cache hit ratio (using the
traditionally accepted formula), computes how much wasted workload must be

Page 3 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

added to increase your hit ratio to I<target>, and then provides the
option to actually perform the wasted work that will raise the hit ratio
to the desired I<target> value. I<target> must be a decimal number between
0 and .999999999.

Using B<set-bchr> can increase the value of your system's database buffer
cache hit ratio, but IT WILL DEGRADE THE PERFORMANCE OF YOUR SYSTEM WHILE
IT RUNS. The intent of B<set-bchr> is to demonstrate humorously but
unequivocally that the database buffer cache hit ratio is an unreliable
indicator of system performance quality. If you intend to use this program
to trick customers or managers into believing that you are doing a better
job than you really are, then, well, good luck with that.

=head2 Options

=over 4

=item B<--service=>I<h>

The name of the Oracle service to which B<vprof> will connect. The default
value is "" (the empty string), which will cause B<vprof> to connect
using, for example, the default Oracle TNS alias.

=item B<--username=>I<u>

The name of the Oracle schema to which B<vprof> will connect. The default
value is "/".

=item B<--password=>I<p>

The Oracle password that B<vprof> will use to connect. The default value
is "" (the empty string).

=item B<--debug=>I<d>

When set to 1, B<vprof> dumps its internal data structures in addition to
its normal output. The default value is 0.

=back

=head1 EXAMPLES

Use of B<set-bchr> will resemble something like the following, in which I
used the tool to "improve" my database buffer cache hit ratio to
approximately 0.92:

 $ set-bchr --username=system --password=manager .92
 Current state
 37,257,059 LIO calls
 3,001,414 PIO calls
 0.919440394 buffer cache hit ratio

 Increasing LIO count by 260,616 will yield
 37,517,675 LIO calls
 3,001,414 PIO calls
 0.920000000 buffer cache hit ratio

 **
 WARNING
 Responding affirmatively to the following prompt will create the
 following effects:
 1) It will degrade the performance of your database while it runs.
 2) It might run a very long time.
 3) It will "improve" your system's buffer cache hit ratio.
 4) It will prove that a high database buffer cache hit ratio is
 an unreliable indicator of Oracle system performance.
 **

 Enter 'y' to "improve" your hit ratio to .92: y

 Performed 260,616 LIO calls in 46.592340 seconds (5,594 LIO/sec)

 Final state
 37,259,288 LIO calls
 3,001,414 PIO calls
 0.919445213 buffer cache hit ratio

Page 4 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-APP-B

=head1 AUTHOR

Cary Millsap (cary.millsap@hotsos.com), heavily derived from original work
performed by Connor McDonald.

=head1 BUGS

B<set-bchr> doesn't necessarily improve the database buffer cache hit
ratio to exactly the value of I<target>, but it gets very close.

B<set-bchr> computes the Oracle database buffer cache hit ratio using the
traditional formula R = (LIO - PIO) / LIO, where LIO is the sum of the
values of the Oracle 'consistent gets' and 'db block gets' statistics, and
PIO is the value of the Oracle 'physical reads' statistic. The computation
of LIO in this way is itself deeply flawed. See [Lewis (2003)] for
details.

=head1 COPYRIGHT

Copyright (c) 2003 by Hotsos Enterprises, Ltd. All rights reserved.

Page 5 of 5O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part IV: Appendixes

Appendix C. M/M/m Queueing Theory Formulas

Table D-1 provides a convenient summary of the M/M/m queueing theory formulas described in Chapter 9.

Table C-1. M/M/m queueing theory formulas

Definition Formula

Average number of arrivals A

Average number of completed requests C

Measurement period T

Average busy time B

Number of parallel service channels m

Average arrival rate

Average interarrival rate

Average system throughput

Average service time

Average service rate

Average total utilization

Average server utilization or load (m servers)

Probability that arriving request will be
enqueued (ErlangC)

Average queueing delay

Average response time

Cumulative distribution function of response
time

Page 1 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-APP-C

Page 2 of 2O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Book: Optimizing Oracle Performance
Section: Part IV: Appendixes

Appendix D. References

[Adams (1999)]

Adams, S. 1999. Oracle8i Internal Services for Waits, Latches, Locks, and Memory. Sebastopol CA: O'Reilly
& Associates.

[Adams (2003)]

Adams, S. 2003. Oracle Internals and Advanced Performance Tuning. Copenhagen: Course presented at
Miracle Master Class 2003, 13-15 Jan. 2003.

[Allen (1994)]

Allen, A. O. 1994. Computer Performance Analysis with Mathematica. Cambridge MA: AP Professional.

[Amdahl (1967)]

Amdahl, A. 1967. "Validity of the single processor approach to achieving large scale computing capabilities"
in AFIPS Conf. Proc., vol. 30.

[Ault and Brinson (2000)]

Ault, M. R.; Brinson, J. M. 2000. Oracle8 DBA: Performance Tuning Exam Cram. Scottsdale AZ: Coriolis.

[Bach (1986)]

Bach, M. J. 1986. The Design of the UNIX Operating System. Englewood Cliffs NJ: Prentice Hall.

[Bentley (1988)]

Bentley, J. 1988. More Programming Pearls: Confessions of a Coder. Reading MA: Addison-Wesley.

[Bodie, et al. (1989)]

Bodie, Z.; Kane, A.; Marcus, A. J. 1989 Investments. Homewood IL: Irwin.

[Bovet and Cesati (2001)]

Bovet, D. P.; Cesati, M. 2001. Understanding the Linux Kernel. Sebastopol CA: O'Reilly.

Page 1 of 9O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

[Brealey and Myers (1988)]

Brealey, R. A.; Myers, S. C. 1988. Principles of Corporate Finance (3ed). New York: McGraw-Hill.

[Breitling (2002)]

Breitling, W. 2002. "A look under the hood of CBO: the 10053 event." http://www.hotsos.com: Hotsos.

[Chiesa (1996)]

Chiesa, D. P. 1996. Unix Performance Measurement.
http://www.transarc.ibm.com/Library/whitepapers/tg/node14.html.

[Cockroft (1998)]

Cockroft, A. 1998. "Prying into processes and workloads," in Unix Insider, 1 Apr. 98.
http://www.sun.com/sun-on-net/itworld/UIR980401perf.html: Sun.

[Comer (1984)]

Comer, D. 1984. Operating System Design, the XINU Approach. Englewood Cliffs NJ: Prentice-Hall.

[CRC (1991)]

Standard Mathematical Tables and Formulae (29ed). Boca Raton FL: CRC Press.

[Dowd (1993)]

Dowd, K. 1993. High Performance Computing. Sebastopol CA: O'Reilly.

[Engsig (2001)]

Engsig, B. 2001. "Efficient use of bind variables, cursor_sharing and related cursor parameters."
http://otn.oracle.com/deploy/performance: Oracle Corp.

[Ensor and Stevenson (1997a)]

Ensor, D.; Stevenson, I. 1997. Oracle Design. Sebastopol CA: O'Reilly.

[Ensor and Stevenson (1997b)]

Ensor, D.; Stevenson, I. 1997. Oracle8 Design Tips. Sebastopol CA: O'Reilly.

[Erlang (1909)]

Page 2 of 9O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Erlang, A. K. 1909. "The Theory of Probabilities and Telephone Conversations," Nyt Tidsskrift for Matematik
B, vol 20, 1909.

[Erlang (1917)]

Erlang, A. K. 1917. "On the rational determination of the number of circuits," in The Life and Works of A. K.
Erlang, 1948. Brockmeyer, E.; Halstrom, H.; Jensen, A. (eds.). Trans. Danish Academy of Tech. Sci. See also
http://plus.maths.org/issue2/erlang/#allref for information about the life of Agner Erlang.

[Feuerstein (1998)]

Feuerstein, S.; Beresniewicz, J.; Dawes, C. 1998. Oracle PL/SQL Built-ins Pocket Reference. Sebastopol CA:
O'Reilly.

[Feynman (1999)]

Feynman, R. P. 1999. The Pleasure of Finding Things Out. Cambridge MA: Perseus.

[Frisch (2002)]

Frisch, Æ. 2002. Essential System Administration (3ed). Sebastopol CA: O'Reilly.

[Frisch (1998)]

Frisch, Æ. 1998. Essential Windows NT System Administration. Sebastopol CA: O'Reilly.

[Goldratt (1992)]

Goldratt, E. M. The Goal: a Process of Ongoing Improvement (2ed). Great Barrington MA: North River Press.

[Gray and Neuhoff (1998)]

Gray, R. M.; Neuhoff, D. L. 1998. "Quantization" in IEEE Transactions on Information Theory, Vol. 44, No.
6, October 1998.

[Gross and Harris (1998)]

Gross, D.; Harris, C. M. 1998. Fundamentals of Queueing Theory (3ed). New York: Wiley.

[Gunther (1998)]

Gunther, N. J. 1998. The Practical Performance Analyst: Performance-by-Design Techniques for Distributed
Systems. New York: McGraw-Hill.

[Gurry and Corrigan (1996)]

Page 3 of 9O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Gurry, M.; Corrigan, P. 1996. Oracle Performance Tuning (2ed). Sebastopol CA: O'Reilly.

[Hailey (2002)]

Hailey, K. 2002. "Direct Oracle SGA Memory Access." http://oraperf.sourceforge.net: SourceForge.

[Harrison (2000)]

Harrison, G. 2000. Oracle SQL High-Performance Tuning (2ed). Upper Saddle River NJ: Prentice Hall PTR.

[Hawking (1988)]

Hawking, S. W. 1988. A Brief History of Time. New York: Bantam.

[Hogg and Tanis (1977)]

Hogg, R. V.; Tanis, E. A. 1983. Probability and Statistical Inference. New York: Macmillan.

[Holt (2000a)]

Holt, J. 2000. "Predicting multi-block read call sizes." http://www.hotsos.com: Hotsos.

[Holt (2000b)]

Holt, J. 2000. "Why are Oracle's read events `named backwards'?" http://www.hotsos.com: Hotsos.

[Holt and Millsap (2000)]

Holt, J.; Millsap, C. 2000. "Scaling applications to massive concurrent user counts." http://www.hotsos.com:
Hotsos.

[Holt et al. (2003)]

Holt, J.; Millsap, C.; Minutella, R.; Goodman, G. 2003. Hotsos Clinic OP101: Optimizing Oracle SQL.
http://www.hotsos.com: Hotsos.

[Jagerman (1974)]

Jagerman, D. L. 1974. "Some Properties of the Erlang Loss Function" in Bell Sys. Tech. J. 55: 525.

[Jain (1991)]

Jain, R. 1991. The Art of Computer Systems Performance Analysis. New York: Wiley.

Page 4 of 9O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

[Kachigan (1986)]

Kachigan, S. K. 1986. Statistical Analysis: an Interdisciplinary Introduction to Univariate and Multivariate
Methods. New York: Radius Press.

[Kennedy and Everest (1994)]

Kennedy, J.; Everest, A. 1994. Effective Interviewing! An Advanced Seminar for Achieving Superior Results.
San Rafael CA: Management Team Consultants, Inc.

[Kleinrock (1975)]

Kleinrock, L. 1975. Queueing Systems, Vol. 1: Theory. New York: Wiley.

[Knuth (1971)]

Knuth, D. E. 1971. "Empirical Study of FORTRAN Programs" in Software—Practice and Experience,
April/June 1971, Vol. 1, No. 2, pp. 105-133.

[Knuth (1981)]

Knuth, D. E. 1981. The Art of Computer Programming (2ed), Vol. 2 Seminumerical Algorithms. Reading MA:
Addison-Wesley.

[Kolk (1996)]

Kolk, A. 1996. Description of Oracle7 Wait Events and Enqueues. Redwood Shores CA: Oracle Corp. internal
document.

[Kolk and Yamaguchi (1999)]

Kolk, A.; Yamaguchi, S. 1999. Yet Another Performance Profiling Method (or YAPP-Method).
http://www.oraperf.com: OraPerf.

[Kolk (2001)]

Kolk. A. 2001. New Oracle9i Timing Features. http://www.oraperf.com: Precise Software Solutions.

[Kyte (2001)]

Kyte, T. 2001. Expert One-on-One Oracle. Birmingham UK: Wrox.

[Kyte (2002)]

Kyte, T. 2002. "Reducing LIOs" in AskTom. http://asktom.oracle.com/pls/ask/f?
p=4950:8:1683948::NO::F4950_P8_DISPLAYID,F4950_P8_CRITERIA:6749454952894: Oracle.

Page 5 of 9O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

[Laplace (1812)]

de Laplace, P. S. 1812. Théorie Analytique des Probabilités.

[Lawson (2003)]

Lawson, C. 2003. The Art and Science of Oracle Performance Tuning. Birmingham UK: Curlingstone.

[Lewis & Papadimitriou (1981)]

Lewis, H. R.; Papadimitriou, C. H. 1981. Elements of the Theory of Computation. Englewood Cliffs NJ:
Prentice Hall.

[Lewis (2001a)]

Lewis, J. 2001. "Folk Lore and Fairy Tales," http://www.jlcomp.demon.co.uk/myths.html: JL Computer
Consultancy

[Lewis (2001b)]

Lewis, J. 2001. Practical Oracle8i: Building Efficient Databases. Upper Saddle River NJ: Addison-Wesley.

[Lewis (2002)]

Lewis, J. 2002. Optimising Oracle. Course presented at Miracle Master Class 2003, 23-25 Jan. 2002.

[Lewis (2003)]

Lewis, J. 2003. "The database gets better but the metrics look worse," in IOUG Live 2003 Proceedings.
http://www.ioug.org.

[Lilja (2000)]

Lilja, D. J. 2000 Measuring Computer Performance: a Practitioner's Guide. Cambridge UK: Cambridge
Press.

[Maloney et al. (1992)]

Malony, A. D.; Reed, D. A.; Wijshoff, H. A. G. 1992. "Performance Measurement Intrusion and Perturbation
Analysis" in IEEE Transactions on Parallel and Distributed Systems, July 1992, Vol. 3, No. 4, pp. 433-450.

[McDonald (2000)]

McDonald, C. 2000. Various hints, tips, and observations, http://www.oracledba.co.uk.

Page 6 of 9O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

[Millsap (1999)]

Millsap, C. V. 1999. "Performance Management: Myths & Facts," http://www.hotsos.com: Oracle.

[Millsap (2000a)]

Millsap, C. V. 2000. "Is RAID 5 Really a Bargain?" http://www.hotsos.com: Hotsos.

[Millsap (2000b)]

Millsap, C. V. 2000. "Batch Queue Management and the Magic of `2'," http://www.hotsos.com: Hotsos.

[Millsap (2001a)]

Millsap, C. V. 2001. "Scalability is a Rate of Change," http://www.hotsos.com: Hotsos.

[Millsap (2001b)]

Millsap, C. V. 2001. "Why a 99%+ Database Buffer Cache Hit Ratio is Not Ok," http://www.hotsos.com:
Hotsos.

[Millsap (2001c)]

Millsap, C. V. 2002. "Why You Should Focus on LIOs Instead of PIOs," http://www.hotsos.com: Hotsos.

[Millsap (2002)]

Millsap, C. V. 2002. "When to Use an Index," http://www.hotsos.com: Hotsos.

[Millsap and Holt (2002)]

Millsap, C. V.; Holt, J. L. 2002. "Useful Constants for the Oracle Performance Analyst,"
http://www.hotsos.com: Hotsos.

[Morle (1999)]

Morle, J. 1999. Scaling Oracle8i: Building Highly Scalable OLTP System Architectures. Upper Saddle River
NJ: Addison-Wesley.

[Musumeci and Loukides (2002)]

Musumeci, G. D.; Loukides, M. 2002. System Performance Tuning (2ed). Sebastopol CA: O'Reilly.

[Nemeth et al. (2000)]

Page 7 of 9O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

Nemeth, E.; Snyder, G.; Seebass, S.; Hein, T. R. 2000. Unix System Administration Handbook (3ed).
Englewood Cliffs NJ: Prentice-Hall PTR.

[Olkin et al. (1994)]

Olkin, I.; Gleser, L. J.; Derman, C. 1994. Probability Models and Applications (2ed). New York: Macmillan.

[Oracle (1996)]

Oracle Corp. 1996. Oracle7 Server Tuning. Redwood Shores CA: Oracle Corp.

[Oracle OCI (1999)]

Oracle Corp. 1999. Oracle Call Interface Programmer's Guide. Redwood Shores CA: Oracle Corp.

[Oracle (2002)]

Oracle Corp. 2002. Oracle9i Database Performance Tuning Guide and Reference Release 2 (9.2). Redwood
Shores CA: Oracle Corp.

[Pelz (2000)]

Pelz, D. 2000. Dave Pelz's Putting Bible: the Complete Guide to Mastering the Green. New York: Doubleday.

[Rivenes (2003)]

Rivenes, A. 2003. Oracle 9.2 Event 10046 Segment-Level Statistics. http://www.appsdba.com: AppsDBA
Consulting.

[Schrag (2002)]

Schrag. R. 2002. Interpreting Wait Events to Boost System Performance.
http://www.dbspecialists.com/presentations/wait_events.html: Database Specialists.

[Stanford (2001)]

Stanford University. 2001. Human Subjects Manual: a comprehensive reference guide for Stanford
researchers, administrators, students, and staff involved in human subjects research,
http://humansubjects.stanford.edu/manual: Stanford University.

[Stevens (1992)]

Stevens, W. R. 1992. Advanced Programming in the Unix Environment. Reading MA: Addison-Wesley.

[Vaidyanatha et al. (2001)]

Page 8 of 9O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

URL http://safari.oreilly.com/059600527X/optoraclep-APP-D

Vaidyanatha, G. K.; Deshpande, K.; Kostelac, J. A. Jr. 2001. Oracle Performance Tuning 101. New York:
Osborne/McGraw-Hill.

[Vernon (2001)]

Vernon, M. K. 2001. CS 547: Computer System Modeling Fundamentals.
http://www.cs.wisc.edu/~vernon/cs547/01/assignments/s5.pdf: University of Wisconsin Madison.

[Wall et al. (2000)]

Wall, L.; Christiansen, T.; Orwant, J. 2000. Programming Perl. Sebastopol CA: O'Reilly & Associates.

[Wolfram (1999)]

Wolfram, S. 1999. Mathematica. Champaign IL: Wolfram.

[Wood (2003)]

Private conversation with Graham Wood of Oracle Corporation's Server Technologies group.

Page 9 of 9O'Reilly Network Safari Bookshelf - Optimizing Oracle Performance

4/26/2004http://safari.oreilly.com/?x=1&mode=print&sortKey=title&sortOrder=asc&view=&xmlid...

